52 resultados para Bacterial decay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cubby Hut is a powerful symbolic structure, an archetypal structure, and a place of imagination, dreams, refuge and adventure. The Cubby is ephemeral and passes from our childhood exploration of the world and into the dreams and memories of adulthood. These cubby huts are primarily built from and located in the landscape and are intrinsically linked to this context; they are landscape as architecture and architecture as landscape and in construction they articulate a connection between the imagination and landscape and decay as they return to the land and the psyche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water quality modelling is becoming increasingly popular in the water industry due to its applications in drinking water and treated wastewater reuse. Microbial growth and disinfectant decay are the two most important factors to be considered in drinking water if they are to comply with stringent guidelines imposed by relevant water regulatory authorities. In the case of drinking water, an optimum level of disinfectant is an important criterion to have pathogen free water with minimal disinfectant by products (DBPs) below the acceptable levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decay of chlorine in drinking water involves a complex set of reactions that is usually simplified to first order kinetics in models of water quality in distribution systems. However, to be useful in optimising chlorine dosing regimes, the kinetics expression should accurately describe the shape of the chlorine decay curve for different chlorine doses and be able to simulate re-chlorination. After considering the nature of the reactions involved in chlorine decay, five simplified reaction schemes were evaluated for their suitability to describe chlorine concentration in bulk water. Each scheme was fitted to a sample of experimental data of chlorine decay in raw water obtained from Warragamba Dam (the major source of water supplied to Sydney, Australia). A scheme involving two parallel reactions of organic carbon compounds with chlorine is both necessary and sufficient to satisfy the requirements of modelling chlorine decay accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a treatment plant in reducing chlorine consuming substances as well as total trihalomethane formation (TTHM) could be evaluated rapidly using an accurate chlorine decay model as used in this study. The model could estimate the concentrations of fast and slow reacting agents (FRA and SRA–including organic and inorganic substances) and fast and slow reacting nitrogenous compounds (FRN and SRN) that are present in test waters. By estimating those concentrations in source and treated waters one could evaluate the performance of the treatment plant as well as provide options such as better catchment management for source water protection or treatment upgrades (e.g. enhanced coagulation) to remove chlorine consuming compounds which also have the potential to form THMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a model of growth of naturally occurring heterotrophic bacteria in the bulk water phase in the absence of disinfectant. The model considers growth with carbon, phosphorus, and nitrogen balance, death and lysis of bacteria, and conversion of less biodegradable organic carbon to assimilable organic carbon. Experimental data from two raw and two treated waters were used to test the model. The model describes the increase of live and dead bacterial cells in the water phase, and its output closely matches the experimental data. Such a model has the ability to characterize water nutrient status as well as to predict behavior of indigenous heterotrophic bacteria. The ability to predict bacterial population dynamics with respect to nutrients is beneficial for water treatment optimization. The model, based on microbiological measurements, helps to characterize treated water quality and project performance in terms of water quality into a distribution system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two laboratory-scale membrane bioreactor systems were investigated to treat high saline wastewater containing 1,000 mg/L COD and 32 g/L NaCl, namely: the yeast membrane bioreactor (YMBR) and the bacterial membrane bioreactor (BMBR). COD removal of both processes was above 90% at a hydraulic retention time (HRT) of 5 hours (volumetric loading of 5 kg COD/m³.d), sludge retention time (SRT) of 50 days (the MLSS of above 14 g/L and the F/M of 0.4 d-1). Under these operating conditions, the YMBR could run at a ten-fold lower transmembrane pressure with significantly reduced membrane fouling rate compared to BMBR. This may be because of low production of adhesive extracellular polymers (ECP) and the secondary filtration layer formed from large yeast cells. ECP production of bacterial sludge was increased considerably at high salt concentrations (32 g/L and 45 g/L) and long SRTs. For the bacterial sludge, the increased salinity led to increase in ECP, whereas the ECP content of the yeast sludge was relatively small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective disinfection planning and management in large, complex water distribution systems requires an accurate network water quality model. This model should be based on reaction kinetics, which describes disinfectant loss from bulk water over time, within experimental error. Models in the literature were reviewed for their ability to meet this requirement in real networks. Essential features were identified as accuracy, simplicity, computational efficiency, and ability to describe consistently the effects of initial chlorine dose, temperature variation, and successive rechlorinations. A reaction scheme of two organic constituents reacting with free chlorine was found to be necessary and sufficient to provide the required features. Recent release of the multispecies extension (MSX) to EPANET and MWH Soft's H2OMap Water MSX network software enables users to implement this and other multiple-reactant bulk decay models in real system simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including b-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP–mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.