35 resultados para BACK-PAIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Despite the availability of evidence-based guidelines for the management of low back pain that contain consistent messages, large evidence-practice gaps in primary care remain.

OBJECTIVES: To perform a systematic review and meta-synthesis of qualitative studies that have explored primary care clinicians' perceptions and beliefs about guidelines for low back pain, including perceived enablers and barriers to guideline adherence.

METHODS: Studies investigatingperceptions and beliefs about low back pain guidelines were included if participants were primary care clinicians and qualitative methods had been used for both data collection and analysis. We searched major databases up to July 2014. Pairs of reviewers independently screened titles and abstracts, extracted data, appraised method quality using the CASP checklist, conducted thematic analysis and synthesized the results in narrative format.

RESULTS: Seventeen studies, with a total of 705 participants, were included. We identified three key emergent themes and eight subthemes: (1) guideline implementation and adherence beliefs and perceptions; (2) maintaining the patient-clinician relationship with imaging referrals; (3) barriers to guideline implementation. Clinicians believed that guidelines were categorical, prescriptive and constrained professional practice; however popular clinical practices superseded the guidelines. Imaging referrals were used to manage consultations and to obtain definitive diagnoses. Clinicians' perceptions reflected a lack of content knowledge and understanding of how guidelines are developed.

DISCUSSION: Addressing misconceptions and other barriers to uptake of evidence-based guidelines for managing low back pain is needed to improve knowledge transfer and close the evidence-practice gap in the treatment of this common condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through an investigation of relationships between subjective wellbeing, health satisfaction and perceived control, the thesis contributes to a greater understanding of the psychological adaptation processes of individuals experiencing back pain. Risk factors to subjective wellbeing are also identified, thus presenting opportunities to provide assistance before the onset of psychopathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to provide an overview of methods used for estimating the burden from musculoskeletal (MSK) conditions in the Global Burden of Diseases 2010 study. It should be read in conjunction with the disease-specific MSK papers published in Annals of Rheumatic Diseases. Burden estimates (disability-adjusted life years (DALYs)) were made for five specific MSK conditions: hip and/or knee osteoarthritis (OA), low back pain (LBP), rheumatoid arthritis (RA), gout and neck pain, and an 'other MSK conditions' category. For each condition, the main disabling sequelae were identified and disability weights (DW) were derived based on short lay descriptions. Mortality (years of life lost (YLLs)) was estimated for RA and the rest category of 'other MSK', which includes a wide range of conditions such as systemic lupus erythematosus, other autoimmune diseases and osteomyelitis. A series of systematic reviews were conducted to determine the prevalence, incidence, remission, duration and mortality risk of each condition. A Bayesian meta-regression method was used to pool available data and to predict prevalence values for regions with no or scarce data. The DWs were applied to prevalence values for 1990, 2005 and 2010 to derive years lived with disability. These were added to YLLs to quantify overall burden (DALYs) for each condition. To estimate the burden of MSK disease arising from risk factors, population attributable fractions were determined for bone mineral density as a risk factor for fractures, the occupational risk of LBP and elevated body mass index as a risk factor for LBP and OA. Burden of Disease studies provide pivotal guidance for governments when determining health priority areas and allocating resources. Rigorous methods were used to derive the increasing global burden of MSK conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Recent work showed an increased risk of cervical and lumbar intervertebral disc (IVD) herniations in astronauts. The European Space Agency asked the authors to advise on the underlying pathophysiology of this increased risk, to identify predisposing factors and possible interventions and to suggest research priorities. METHODS: The authors performed a narrative literature review of the possible mechanisms, and conducted a survey within the team to prioritize research and prevention approaches. RESULTS AND CONCLUSIONS: Based on literature review the most likely cause for lumbar IVD herniations was concluded to be swelling of the IVD in the unloaded condition during spaceflight. For the cervical IVDs, the knowledge base is too limited to postulate a likely mechanism or recommend approaches for prevention. Basic research on the impact of (un)loading on the cervical IVD and translational research is needed. The highest priority prevention approach for the lumbar spine was post-flight care avoiding activities involving spinal flexion, followed by passive spinal loading in spaceflight and exercises to reduce IVD hyper-hydration post-flight.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STUDY DESIGN: Randomized controlled trial. OBJECTIVE: Determine the effectiveness a resistive exercise countermeasure with whole-body vibration in relation to lumbo-pelvic muscle and spinal morphology changes during simulated spaceflight (bed-rest). SUMMARY OF BACKGROUND DATA: Spinal lengthening, flattening of the spinal curves, increases in disc size, and muscle atrophy are commonly seen in spaceflight simulation. This may represent a risk for low back injury. Consideration of exercise countermeasures against these changes is critical for success of long-term spaceflight missions. METHODS: Twenty healthy male subjects underwent 8-weeks of bed-rest with 6-months follow-up and were randomly allocated to an inactive control or countermeasure exercise group. Magnetic resonance imaging of the lumbo-pelvic region was conducted at regular time-points during and after bed-rest. Using uniplanar images at L4, cross-sectional areas of the multifidus, lumbar erector spinae, quadratus lumborum, psoas, anterolateral abdominal, and rectus abdominis muscles were measured. Sagittal scans were used to assess lumbar spine morphology (length, sagittal disc area and height, and intervertebral angles). RESULTS: The countermeasure group exhibited less multifidus muscle atrophy (P = 0.024) and its atrophy did not persist long-term as in the control group (up to 3-months; P < 0.006). Spinal lengthening (P = 0.03) and increases in disc area (P = 0.041) were also reduced. Significant partial correlations (P < 0.001) existed between spinal morphology and muscle cross-sectional area changes. CONCLUSION: The resistive vibration exercise countermeasure reduced, but did not entirely prevent, multifidus muscle atrophy and passive spinal tissue deconditioning during bed-rest. Atrophy of the multifidus muscles was persistent long-term in the inactive subjects. Future work could consider closer attention to spinal posture during exercise and optimizing exercise dose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microgravity and inactivity due to prolonged bed rest have been shown to result in atrophy of spinal extensor muscles such as the multifidus, and either no atrophy or hypertrophy of flexor muscles such as the abdominal group and psoas muscle. These effects are long-lasting after bed rest and the potential effects of rehabilitation are unknown. This two-group intervention study aimed to investigate the effects of two rehabilitation programs on the recovery of lumbo-pelvic musculature following prolonged bed rest. 24 subjects underwent 60 days of head down tilt bed rest as part of the 2nd Berlin BedRest Study (BBR2-2). After bed rest, they underwent one of two exercise programs, trunk flexor and general strength (TFS) training or specific motor control (SMC) training. Magnetic resonance imaging of the lumbo-pelvic region was conducted at the start and end of bed rest and during the recovery period (14 and 90 days after re-ambulation). Cross-sectional areas (CSAs) of the multifidus, psoas, lumbar erector spinae and quadratus lumborum muscles were measured from L1 to L5. Morphological changes including disc volume, spinal length, lordosis angle and disc height were also measured. Both exercise programs restored the multifidus muscle to pre-bed-rest size, but further increases in psoas muscle size were seen in the TFS group up to 14 days after bed rest. There was no significant difference in the number of low back pain reports for the two rehabilitation groups (p=.59). The TFS program resulted in greater decreases in disc volume and anterior disc height. The SMC training program may be preferable to TFS training after bed rest as it restored the CSA of the multifidus muscle without generating potentially harmful compressive forces through the spine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STUDY DESIGN: prospective longitudinal study. OBJECTIVE: to evaluate the effect of bed-rest on the lumbar musculature and soft-tissues. SUMMARY OF BACKGROUND DATA: earlier work has suggested that the risk of low back injury is higher after overnight bed-rest or spaceflight. Changes in spinal morphology and atrophy in musculature important in stabilizing the spine could be responsible for this, but there are limited data on how the lumbar musculature and vertebral structures are affected during bed-rest. METHODS: nine male subjects underwent 60-days head-down tilt bed-rest as part of the second Berlin Bed-Rest Study. Disc volume, intervertebral spinal length, intervertebral lordosis angle, and disc height were measured on sagittal plane magnetic resonance images. Axial magnetic resonance images were used to measure cross-sectional areas (CSAs) of the multifidus (MF), erector spinae, quadratus lumborum, and psoas from L1 to L5. Subjects completed low back pain (LBP) questionnaires for the first 7-days after bed-rest. RESULTS: increases in disc volume, spinal length (greatest at lower lumbar spine), loss of the lower lumbar lordosis, and move to a more lordotic position at the upper lumbar spine (P < 0.0097) were seen. The CSAs of all muscles changed (P < 0.002), with the rate of atrophy greatest at L4 and L5 in MF (P < 0.002) and at L1 and L2 in the erector spinae (P = 0.0006). Atrophy of the quadratus lumborum was consistent throughout the muscle (P = 0.15), but CSA of psoas muscle increased (P < 0.0001). Subjects who reported LBP after bed-rest showed, before reambulation, greater increases in posterior disc height, and greater losses of MF CSA at L4 and L5 than subjects who did not report pain (all P < 0.085). CONCLUSION: these results provide evidence that changes in the lumbar discs during bed-rest and selective atrophy of the MF muscle may be important factors in the occurrence of LBP after prolonged bed-rest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the effect of high-load fly-wheel (targeting the lower-limb musculature and concurrent loading of the spine via shoulder restraints) and spinal movement countermeasures against lumbar spine muscle atrophy, disc and spinal morphology changes and trunk isokinetic torque loss during prolonged bed-rest. Twenty-four male subjects underwent 90 d head-down tilt bed-rest and performed either fly-wheel (FW) exercises every three days, spinal movement exercises in lying five times daily (SpMob), or no exercise (Ctrl). There was no significant impact of countermeasures on losses of isokinetic trunk flexion/extension (p≥0.65). Muscle volume change by day-89 of bed-rest in the psoas, iliacus, lumbar erector spinae, lumbar multifidus and quadratus lumborum, as measured via magnetic resonance imaging (MRI), was statistically similar in all three groups (p≥0.33). No significant effect on MRI-measures of lumbar intervertebral disc volume, spinal length and lordosis (p≥0.09) were seen either, but there was some impact (p≤0.048) on axial plane disc dimensions (greater reduction than in Ctrl) and disc height (greater increases than in Ctrl). MRI-data from subjects measured 13 and 90-days after bed-rest showed partial recovery of the spinal extensor musculature by day-13 after bed-rest with this process complete by day-90. Some changes in lumbar spine and disc morphology parameters were still persistent 90-days after bed-rest. The present results indicate that the countermeasures tested were not optimal to maintain integrity of the spine and trunk musculature during bed rest. © 2011 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As part of the nutrition-countermeasures (NUC) study in Cologne, Germany in 2010, seven healthy male subjects underwent 21 days of head-down tilt bed rest and returned 153 days later to undergo a second bout of 21-day bed rest. As part of this model, we aimed to examine the recovery of the lumbar intervertebral discs and muscle cross-sectional area (CSA) after bed rest using magnetic resonance imaging and conduct a pilot study on the effects of bed rest in lumbar muscle activation, as measured by signal intensity changes in T(2)-weighted images after a standardized isometric spinal extension loading task. The changes in intervertebral disc volume, anterior and posterior disc height, and intervertebral length seen after bed rest did not return to prebed-rest values 153 days later. While recovery of muscle CSA occurred after bed rest, increases (P ≤ 0.016) in multifidus, psoas, and quadratus lumborum muscle CSA were seen 153 days after bed rest. A trend was seen for greater activation of the erector spinae and multifidus muscles in the standardized loading task after bed rest. Greater reductions of multifidus and psoas CSA muscle and greater increases in multifidus signal intensity with loading were associated with incidence of low back pain in the first 28 days after bed rest (P ≤ 0.044). The current study contributes to our understanding of the recovery of the lumbar spine after 21-day bed rest, and the main finding was that a decrease in spinal extensor muscle CSA recovers within 5 mo after bed rest but that changes in the intervertebral discs persist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the effects of a resistive vibration exercise (RVE) countermeasure on changes in lumbo-pelvic muscle motor control during prolonged bed-rest, 20 male subjects took part in the Berlin Bed-Rest Study (in 2003-2005) and were randomised to a RVE group or an inactive control group. Surface electromyographic signals recorded from five superficial lumbo-pelvic muscles during a repetitive knee movement task. The task, which required stabilisation of the lumbo-pelvic region, was performed at multiple movement speeds and at multiple time points during and after bed-rest. After excluding effects that could be attributed to increases in subcutaneous fat changes and improvements in movement skill, we found that the RVE intervention ameliorated the generalised increases in activity ratios between movement speeds (p⩽0.012), reductions in lumbo-pelvic extensor and flexor co-contraction (p=0.058) and increases in root-mean-square electromyographic amplitude (p=0.001) of the lumbar erector spinae muscles. Effects of RVE on preventing increases in amplitude-modulation (p=0.23) of the lumbar erector spinae muscles were not significant. Few significant changes in activation-timing were seen. The RVE intervention during bed-rest, with indirect loading of the spine during exercise, was capable of reducing some, but not all, motor control changes in the lumbo-pelvic musculature during and after bed-rest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STUDY DESIGN: Prospective longitudinal study. OBJECTIVE: To evaluate the recovery of the lumbar intervertebral discs after bed rest. SUMMARY OF BACKGROUND DATA: Prolonged bed rest is a useful model to understand the modeling and remodeling of tissues due to disuse and reloading, yet this process in the lumbar intervertebral discs has not been examined in detail. METHODS: A total of 24 male subjects completed 60 days of head-down tilt bed rest as part of the 2nd Berlin BedRest Study and returned for magnetic resonance scanning 180 days (n = 22) and 2 years (n = 21) after bed rest. Lumbar disc volume, anterior and posterior disc height, disc signal intensity, intervertebral length, and lordosis were measured on sagittal plane magnetic resonance images. RESULTS.: Compared with prior to bed rest, increases in disc volume, disc height, and intervertebral length persisted 180 days (P ≤ 0.0004) and 720 days (P ≤ 0.024) after bed rest. Disc signal intensity remained increased 180 days (P = 0.034) after bed rest but was then decreased (P = 0.018) compared with baseline at the next measurement date. CONCLUSION: The recovery of the lumbar intervertebral discs after 60-day bed rest is a prolonged process and incomplete within 2 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Establishing the long-term repeatability of quantitative measures of lumbar intervertebral disc and spinal morphology is important for planning interventional studies. We aimed to examine this issue and to determine to what extent a smaller number of measurements per disc or vertebral level could be used to save operator time without compromising measurement precision. Twenty-one healthy male subjects were scanned at baseline and 1.5 years later. On sagittal MR-scans intervertebral disc cross-sectional area, anterior disc height, posterior disc height, intervertebral angle and intervertebral length were measured. The repeatability of the average value from all sagittal images or from 1, 3, 5 or 7 images centred at the spinous process was evaluated. Bland-Altman analysis showed all measurements to be repeatable between testing days. Intervertebral length was the most precise measurement (coefficients of variation [CVs] between 1.2% and 1.5%), followed by disc cross-sectional area (CVs between 2.9% and 3.6%). Variance component analysis showed that using 7 images, but not 1, 3 or 5 images, resulted in a similar level of measurement error as when measurements from all images were included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, low back pain becomes a common healthcare problem. Poor or unsuitable seat design is related to the discomfort and other healthcare problems of users. The aim of this study is to investigate the influence of seat design variables on the compressive loadings of lumbar joints. A basis that includes a musculoskeletal human body model and a chair model has been developed using LifeMOD Biomechanics Modeller. Inverse and forward dynamic simulations have been performed for various seat design parameters. The results show that the inclination of backrest and seat pan may or may not decrease the compressive spinal joint forces, depending on other conditions. The medium-level height and depth of seat pan and the medium-level and high-level height of backrest are found to cause the minimum compressive loads on lumbar joints. This work contributes to a better understanding of sitting biomechanics and provides some useful guidelines for seat design.