22 resultados para Augmented-wave Method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among many structural health monitoring (SHM) methods, guided wave (GW) based method has been found as an effective and efficient way to detect incipient damages. In comparison with other widely used SHM methods, it can propagate in a relatively long range and be sensitive to small damages. Proper use of this technique requires good knowledge of the effects of damage on the wave characteristics. This needs accurate and computationally efficient modeling of guide wave propagation in structures. A number of different numerical computational techniques have been developed for the analysis of wave propagation in a structure. Among them, Spectral Element Method (SEM) has been proposed as an efficient simulation technique. This paper will focus on the application of GW method and SEM in structural health monitoring. The GW experiments on several typical structures will be introduced first. Then, the modeling techniques by using SEM are discussed. © (2014) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen-14 solid-state NMR (SSNMR) is utilized to differentiate three polymorphic forms and a hydrochloride (HCl) salt of the amino acid glycine. Frequency-swept Wideband, Uniform Rate, Smooth Truncated (WURST) pulses were used in conjunction with Carr-Purcell Meiboom-Gill refocusing, in the form of the WURST-CPMG pulse sequence, for all spectral acquisitions. The 14N quadrupolar interaction is shown to be very sensitive to variations in the local electric field gradients (EFGs) about the 14N nucleus; hence, differentiation of the samples is accomplished through determination of the quadrupolar parameters CQ and ηQ, which are obtained from analytical simulations of the 14N SSNMR powder patterns of stationary samples (i.e., static NMR spectra). Additionally, differentiation of the polymorphs is also possible via the measurement of 14N effective transverse relaxation time constants, Teff2(14N). Plane-wave density functional theory (DFT) calculations, which exploit the periodicity of crystal lattices, are utilized to confirm the experimentally determined quadrupolar parameters as well as to determine the orientation of the 14N EFG tensors in the molecular frames. Several signal-enhancement techniques are also discussed to help improve the sensitivity of the 14N SSNMR acquisition method, including the use of selective deuteration, the application of the BRoadband Adiabatic INversion Cross-Polarization (BRAIN-CP) technique, and the use of variable-temperature (VT) experiments. Finally, we examine several cases where 14N VT experiments employing Carr-Purcell-Meiboom-Gill (CPMG) refocusing are used to approximate the rotational energy barriers for RNH3+ groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guided wave (GW) has been used for many years in non-destructive testing (NDT). There are various ways to generate the guided wave, including impact or impulse either manually or using devices. Although the method of impact or impulse is considered to be simple and practical in guided wave generation, it produces waves with broadband frequencies, which often make analysis much more difficult. The frequency bandwidth produced by manual impacts is usually at the low end, and is therefore justified when dealing with one dimensional wave propagation assumption in low strain integrity testing of cylindrical structures. Under such assumption if the velocity is known accurately, NDTs can produce reasonably good results for the condition assessment of the structure. However, for guided wave propagation in timber pole-like structures, it is rather complicated as timber is an orthotropic material and wave propagation in an orthotropic medium exhibits different characteristics from that in isotropic medium. It is possible to obtain solutions for guided wave propagation in orthotropic media for cylindrical structures, even though the orthotropic material greatly complicates GW propagation. In this paper, timber has been considered as a transversely isotropic (i.e. simplified orthotropic) material and a comparative study of GW propagation in a timber pole is conducted considering isotropic and transversely isotropic modelling. Phase velocity, group velocity and attenuation are the main parameters for this comparative study. Moreover, tractionfree situation and embedded geotechnical condition are also taken into consideration to evaluate the effect of boundary. Displacement profile, wave propagation pattern and power flow at particular frequency are utilized to determine different displacement components of longitudinal and flexural waves along and across the timber pole. Effect of temperature and moisture content (in terms of modulus of elasticity) in timber pole is also compared to show the variation in phase velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Round timbers are extensively used as utility poles in Australia for electricity distribution and communication. Lack of information on their conditions results in great difficulties on asset management for industries. Despite the development of various non-destructive testing (NDT) techniques for evaluating the condition of piles, few NDTs are reported for applications on timber poles. This paper addresses challenges and issues on development of NDTs for condition assessment and embedded length of timber poles. For this paper, it is mainly focusing on determining the embedded length of the pole considering loss of the sufficient embedment length is a main factor compromising capacity and safety of timber poles. Since it is impractical for generating longitudinal waves by impacting from the top of poles, utilizing flexural wave from side impact on poles becomes attractive. However, the flexural wave is known by its highly dispersive nature. In this paper, one dimensional wave theory, guided wave theory and advanced signal processing techniques have been introduced in order to provide a solution for the problem. Two signal processing techniques, namely short kernel method and continuous wavelet transform, have been investigated for processing flexural wave signals to evaluate wave velocity and embedment length of timber poles in service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timber poles are commonly used for telecommunication and power distribution networks, wharves or jetties, piling or as a substructure of short span bridges. Most of the available techniques currently used for non-destructive testing (NDT) of timber structures are based on one-dimensional wave theory. If it is essential to detect small sized damage, it becomes necessary to consider guided wave (GW) propagation as the behaviour of different propagating modes cannot be represented by one-dimensional approximations. However, due to the orthotropic material properties of timber, the modelling of guided waves can be complex. No analytical solution can be found for plotting dispersion curves for orthotropic thick cylindrical waveguides even though very few literatures can be found on the theory of GW for anisotropic cylindrical waveguide. In addition, purely numerical approaches are available for solving these curves. In this paper, dispersion curves for orthotropic cylinders are computed using the scaled boundary finite element method (SBFEM) and compared with an isotropic material model to indicate the importance of considering timber as an anisotropic material. Moreover, some simplification is made on orthotropic behaviour of timber to make it transversely isotropic due to the fact that, analytical approaches for transversely isotropic cylinder are widely available in the literature. Also, the applicability of considering timber as a transversely isotropic material is discussed. As an orthotropic material, most material testing results of timber found in the literature include 9 elastic constants (three elastic moduli and six Poisson's ratios), hence it is essential to select the appropriate material properties for transversely isotropic material which includes only 5 elastic constants. Therefore, comparison between orthotropic and transversely isotropic material model is also presented in this article to reveal the effect of elastic moduli and Poisson's ratios on dispersion curves. Based on this study, some suggestions are proposed on selecting the parameters from an orthotropic model to transversely isotropic condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave Doppler radar has received considerable attention as a non-contact form of measuring human respiration; in particular for long term monitoring. One of the main challenges in converting this into a viable application is to suppress or separate the artefacts and other interfering signals from the desired respiration signal using a less complex and practically feasible design for regular and potentially real time use. Existing systems either require complex experimental setups or multiple Doppler radar modules to achieve this. In this paper, we propose an approach based on EMD-ICA and approximate entropy ideas to systematically separate received Doppler shifted signal into distinct components and reconstruct the desired respiration pattern pertaining to respective physiological activity. Indeed this allows suppression of the undesirable artefacts and interference from other competing signals. Practical experiments confirmed comparable performance of the proposed method to the measurements obtained through chest straps which are widely used clinically for monitoring respiration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low strain integrity testing is commonly used to assess the in situ condition of the poles or piles. For poles, it is important to calculate the embedment length and location of damage which is highly influenced by the accurate determination of the wave velocity. In general, depending on impact location and orientation, both longitudinal and bending waves may generate inside the pole, and these two waves have very distinct characteristics and wave velocity. These differences are even more prominent in the low frequency which is usually induced in the low strain non-destructive testing. Consequently, it will be useful if these two waves can be separated for the condition assessment of the poles. In this paper, a numerical analysis is performed on a pole considering that both waves are generated, and a method is proposed to differentiate these two waves based on an appropriate sensor arrangement that includes the location and the orientation of the sensors. Continuous wavelet transform is applied on the numerical signal to calculate the phase velocity of the waves and compared with analytical phase velocity curves. From the results, it can be seen that appropriate location and orientation of the sensors can separate the longitudinal and flexural waves as they match significantly well with the corresponding analytical phase velocity curves of these two waves.