40 resultados para Anatomy. RNA Sequencing. Catalase. Ascorbate peroxidase. Superoxide dismutase. Saccharum spp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary heart disease (CHD) remains the greatest killer in the Western world, and although the death rate from CHD has been falling, the current increased prevalence of major risk factors including obesity and diabetes, suggests it is likely that CHD incidence will increase over the next 20 years. In conjunction with preventive strategies, major advances in the treatment of acute coronary syndromes and myocardial infarction have occurred over the past 20 years. In particular the ability to rapidly restore blood flow to the myocardium during heart attack, using interventional cardiologic or thrombolytic approaches has been a major step forward. Nevertheless, while 'reperfusion' is a major therapeutic aim, the process of ischemia followed by reperfusion is often followed by the activation of an injurious cascade. While the pathogenesis of ischemia-reperfusion is not completely understood, there is considerable evidence implicating reactive oxygen species (ROS) as an initial cause of the injury.

ROS formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks, all potentially damaging to normal cellular function. ROS have been shown to be generated following routine clinical procedures such as coronary bypass surgery and thrombolysis, due to the unavoidable episode of ischemia-reperfusion. Furthermore, they have been associated with poor cardiac recovery post-ischemia, with recent studies supporting a role for them in infarction, necrosis, apoptosis, arrhythmogenesis and endothelial dysfunction following ischemia-reperfusion. In normal physiological condition, ROS production is usually homeostatically controlled by endogenous free radical scavengers such as superoxide dismutase, catalase, and the glutathione peroxidase and thioredoxin reductase systems. Accordingly, targeting the generation of ROS with various antioxidants has been shown to reduce injury following oxidative stress, and improve recovery from ischemia-reperfusion injury.

This review summarises the role of myocardial antioxidant enzymes in ischemia-reperfusion injury, particularly the glutathione peroxidase (GPX) and the thioredoxin reductase (TxnRed) systems. GPX and TxnRed are selenocysteine dependent enzymes, and their activity is known to be dependent upon an adequate supply of dietary selenium. Moreover, various studies suggest that the supply of selenium as a cofactor also regulates gene expression of these selenoproteins. As such, dietary selenium supplementation may provide a safe and convenient method for increasing antioxidant protection in aged individuals, particularly those at risk of ischemic heart disease, or in those undergoing clinical procedures involving transient periods of myocardial hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1) antioxidant and oxidative stress markers, (2) aortic mRNA of NADPH oxidase (NOX) subunits and superoxide dismutase (SOD) isoforms and (3) endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22phox, NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA) was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 - generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalase, an oxidoreductase enzyme, works as a detoxification system inside living cells against reactive oxygen species formed as a by-product of different metabolic reactions. The enzyme is found in a wide range of aerobic and anaerobic organisms. Catalase has also been employed in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to its other applications in textile, paper, food and pharmaceutical industries. New applications for catalases are constantly emerging thanks to their high turnover rate, distinct evolutionary origin, relatively simple and well-defined reaction mechanisms. The following review provides comprehensive information on isolation, production and purification of catalases with different techniques from various microbial sources along with their types, structure, mechanism of action and applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Functionalized gold nanoparticles are emerging as a promising nanocarrier for target specific delivery of the therapeutic molecules in a cancer cell, as a result it targeted selectively to the cancer cell and minimized the off-target effect. The functionalized nanomaterial (bio conjugate) brings novel functional properties, for example, the high payload of anticancer, antioxidant molecules and selective targeting of the cancer molecular markers. The current study reported the synthesis of multifunctional bioconjugate (GNPs-Pep-A) to target the cancer cell. METHODS: The GNPs-Pep-A conjugate was prepared by functionalization of GNPs with peptide-A (Pro-His-Cys-Lys-Arg-Met; Pep-A) using thioctic acid as a linker molecule. The GNPs-Pep-A was characterized and functional efficacy was tested using Retinoblastoma (RB) cancer model in vitro. RESULTS: The GNPs-Pep-A target the reactive oxygen species (ROS) in RB, Y79, cancer cell more effectively, and bring down the ROS up to 70 % relative to control (untreated cells) in vitro. On the other hand, Pep-A and GNPs showed 40 and 9 % reductions in ROS, respectively, compared to control. The effectiveness of bioconjugate indicates the synergistic effect, due to the coexistence of both organic (Pep-A) and inorganic phase (GNPs) in novel GNPs-Pep-A functional material. In addition to this, it modulates the mRNA expression of antioxidant genes glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) by two-threefolds as observed. CONCLUSIONS: The effects of GNPs-Pep-A on ROS reduction and regulation of antioxidant genes confirmed that Vitis vinifera L. polyphenol-coated GNPs synergistically improve the radical scavenging properties and enhanced the apoptosis of cancer cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three pairs of parental (ρ+) and established mitochondrial DNA depleted (ρ0) cells, derived from bone, lung and muscle were used to verify the influence of the nuclear background and the lack of efficient mitochondrial respiratory chain on antioxidant defences and homeostasis of intracellular reactive oxygen species (ROS). Mitochondrial DNA depletion significantly lowered glutathione reductase activity, glutathione (GSH) content, and consistently altered the GSH2 : oxidized glutathione ratio in all of the ρ0 cell lines, albeit to differing extents, indicating the most oxidized redox state in bone ρ0 cells. Activity, as well as gene expression and protein content, of superoxide dismutase showed a decrease in bone and muscle ρ0 cell lines but not in lung ρ0 cells. GSH peroxidase activity was four times higher in all three ρ0 cell lines in comparison to the parental ρ+, suggesting that this may be a necessary adaptation for survival without a functional respiratory chain. Taken together, these data suggest that the lack of respiratory chain prompts the cells to reduce their need for antioxidant defences in a tissue-specific manner, exposing them to a major risk of oxidative injury. In fact bone-derived ρ0 cells displayed the highest steady-state level of intracellular ROS (measured directly by 2',7'-dichlorofluorescin, or indirectly by aconitase activity) compared to all the other ρ+ and ρ0 cells, both in the presence or absence of glucose. Analysis of mitochondrial and cytosolic/iron regulatory protein-1 aconitase indicated that most ROS of bone ρ0 cells originate from sources other than mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study aimed to determine if 25 days of canola oil intake in the absence of excess dietary salt or together with salt loading affects antioxidant and oxidative stress markers in the circulation. A further aim was to determine the mRNA expression of NADPH oxidase subunits and superoxide dismutase (SOD) isoforms in the aorta of stroke-prone spontaneously hypertensive (SHRSP) rats.

Methods: Male SHRSP rats, were fed a defatted control diet containing 10% wt/wt soybean oil or a defatted treatment diet containing 10% wt/wt canola oil, and given tap water or water containing 1% NaCl. Blood was collected at the end of study for analysis of red blood cell (RBC) antioxidant enzymes, RBC and plasma malondialdehyde (MDA), plasma 8-isoprostane and plasma lipids. The aorta was removed and the mRNA expression of NOX2, p22phox, CuZn-SOD, Mn-SOD and EC-SOD were determined.

Results: In the absence of salt, canola oil reduced RBC SOD and glutathione peroxidase, and increased total cholesterol and LDL cholesterol compared with soybean oil. RBC glutathione peroxidase activity was significantly lower in both the salt loaded groups compared to the soybean oil only group. In addition, RBC MDA and plasma HDL cholesterol were significantly higher in both the salt loaded groups compared to the no salt groups. Plasma MDA concentration was higher and LDL cholesterol concentration lower in the canola oil group loaded with salt compared to the canola oil group without salt. The mRNA expression of NADPH oxidase subunits and SOD isoforms were significantly reduced in the canola oil group with salt compared to canola oil group without salt.

Conclusion: In conclusion, these results indicate that canola oil reduces antioxidant status and increases plasma lipids, which are risk factors for cardiovascular disease. However, canola oil in combination with salt intake increased MDA, a marker of lipid peroxidation and decreased NAPDH oxidase subunits and aortic SOD gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biochemical responses of the earthworms, Eisenia fetida, exposed to a series of Cd concentrations (0.00, 1.25, 2.50, 5.00 and 10.00 mg Cd2+ kg−1 soil) for up to 8 weeks were investigated, aiming to evaluate the sublethal effects of Cd with long exposure and to explore the potential for applying these responses as biomarkers to indicate the Cd-contaminated soil. The following biochemical parameters were determined: cytochrome P450 (CYP) contents and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-s-transferase (GST). Cadmium concentrations in all earthworms were apparently accumulated in 4 weeks, and showed minor changes in weeks 6–8 compared to the first 4 weeks. CYP presented a significant elevation in 2–4 weeks and a decline in 6–8 weeks in each treated group. The activities of SOD and CAT showed an obvious increase with exposure of 6–8 weeks while their levels were not affected in 4 weeks in each treated group. GST activity revealed significant activation starting from week 4. This study confirmed the significance of applying a suite of biomarkers rather than a selective choice to assess the impact of pollutants on organisms. It also indicated that the observed effects were more dependent upon exposure duration than dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Milk is considered on of the world’s most ‘complete’ food. To characterise milk composition, Amit investigated RNA present of milk form 8 different species ranging from platypus to human. By applying latest RNA sequencing and bioinformatic techniques, his work led to uncover hundreds of novel milk RNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radioprotective effect of Polyalthia longifolia was studied in mice. P. longifolia treatment showed improvement in mice survival compared to 100% mortality in the irradiated mice. Significant increases in hemoglobin concentration, and red blood cell, white blood cell and platelet counts were observed in the animals pretreated with leaf extract. Pre-irradiation administration of P. longifolia leaf extract also increased the CFU counts of the spleen colony and increased the relative spleen size. A dose-dependent decrease in lipid peroxidation levels was observed in the animals pretreated with P. longifolia. However, although the animals pretreated with P. longifolia exhibited a significant increase in superoxide dismutase and catalase activity, the values remained below normal in both liver and the intestine. Pre-irradiation administration of P. longifolia also resulted in the regeneration of the mucosal crypts and villi of the intestine. Moreover, pretreatment with P. longifolia leaf extract also showed restoration of the normal liver cell structure and a significant reduction in the elevated levels of ALT, AST and bilirubin. These results suggested the radioprotective ability of P. longifolia leaf extract, which is significant for future investigation for human applications in developing efficient, economically viable, non-toxic natural and clinically acceptable novel radioprotectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper is an essential element for the activity of a number of physiologically important enzymes. Enzyme-related malfunctions may contribute to severe neurological symptoms and neurological diseases: copper is a component of cytochrome c oxidase, which catalyzes the reduction of oxygen to water, the essential step in cellular respiration. Copper is a cofactor of Cu/Zn-superoxide-dismutase which plays a key role in the cellular response to oxidative stress by scavenging reactive oxygen species. Furthermore, copper is a constituent of dopamine-β-hydroxylase, a critical enzyme in the catecholamine biosynthetic pathway. A detailed exploration of the biological importance and functional properties of proteins associated with neurological symptoms will have an important impact on understanding disease mechanisms and may accelerate development and testing of new therapeutic approaches. Copper binding proteins play important roles in the establishment and maintenance of metal-ion homeostasis, in deficiency disorders with neurological symptoms (Menkes disease, Wilson disease) and in neurodegenerative diseases (Alzheimer’s disease). The Menkes and Wilson proteins have been characterized as copper transporters and the amyloid precursor protein (APP) of Alzheimer’s disease has been proposed to work as a Cu(II) and/or Zn(II) transporter. Experimental, clinical and epidemiological observations in neurodegenerative disorders like Alzheimer’s disease and in the genetically inherited copper-dependent disorders Menkes and Wilson disease are summarized. This could provide a rationale for a link between severely dysregulated metal-ion homeostasis and the selective neuronal pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, we compared purified Salvia miltiorrhiza extract (PSME) with Angiotensin-converting enzyme inhibitor, Ramipril, in in vitro experiments and also in vivo using animal model of myocardial infarction. PSME was found to have a significantly higher trolox equivalent antioxidant capacity which indicated a great capacity for scavenging free radicals. PSME could also prevent pyrogallo red bleaching and DNA damage.

After 2 weeks treatment with PSME or Ramipril, survival rates of rats with experimental myocardial infarction were marginally increased (68.2% and 71.4%) compared with saline (61.5%). The ratios of infarct size to left ventricular size in both PSME-and Ramipril-treated rats were significantly less than that in the saline-treated group. Activity of cardiac antioxidant enzyme superoxide dismutase (SOD) was significant higher while level of Thiobarbituric acid-reactive substances (TBARs) was lower in the PSME treated group. Purified and standardized Chinese herb could provide an alternative regimen for the prevention of ischemic heart disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA sequencing and gene expression data related to lactation (mammary gland, milk and their sub compartments) obtained in a number of species (buffalo, mice, human, seal, wallaby, platypus).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria from the genus Mycoplasma are common inhabitants of the respiratory, gastrointestinal, and genital tracts of mammals. The understanding of the pathological significance of mycoplasmas in seals is poor, as few studies have utilized the specific culture techniques required to isolate these bacteria. The current study surveyed for the Mycoplasma species present in Australian fur seals (Arctocephalus pusillus doriferus) and investigated the association between infection and pathology. Mycoplasmas were found in the nasal cavities of 55/80 (69%) of apparently healthy individuals. Isolates from 18 individuals were investigated through 16S ribosomal RNA sequencing, and 3 species were identified: M. zalophi, M. phocae, and Mycoplasma sp. (GenBank no. EU714238.1), all of which had previously been isolated from Northern Hemisphere pinnipeds. In addition, mycoplasmas were isolated from the lungs of 4 out of 16 juveniles and 1 out of 5 adults sampled at necropsy. Isolates obtained were M. zalophi, Mycoplasma sp. EU714238.1, and M. phocicerebrale, but infection was not associated with lung pathology in these age classes. Inflammatory disease processes of the heart and/or lungs were present in 12 out of 32 (38%) aborted fetuses on microscopic examination. Predominant findings were interstitial pneumonia, pericarditis, and myocarditis. Mycoplasma phocicerebrale was isolated from the thymus of an aborted fetus, and 3 out of 11 (27%) fetuses with inflammatory heart or lung lesions were PCR-positive for Mycoplasma. In conclusion, several species of Mycoplasma are part of the normal flora of the nasal cavity of Australian fur seals, and some mycoplasmas may be associated with abortion in this species of seal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

COS-7 cells transfected with human immunodeficiency virus type 1 (HIV-1) proviral DNA produce virus in which three tRNA species are most abundant in the viral tRNA population. These tRNAs have been identified through RNA sequencing techniques as tRNA(3Lys) the primer tRNA in HIV-1, and members of the tRNA(1,2Lys) isoacceptor family. These RNAs represent 60% of the low-molecular-weight RNA isolated from virus particles, while they represent only 6% of the low-molecular-weight RNA isolated from the COS cell cytoplasm. Thus, tRNA(Lys) is selectively incorporated into HIV-1 particles. We have measured the ratio of tRNA(3Lys) molecules to copies of genomic RNA in viral RNA samples and have calculated that HIV-1 contains approximately eight molecules of tRNA(3Lys) per two copies of genomic RNA. We have also obtained evidence that the Pr160gag-pol precursor is involved in primer tRNA(3Lys) incorporation into virus. First, selective tRNA(Lys) incorporation and wild-type amounts of tRNA(3Lys) were maintained in a protease-negative virus unable to process Pr55gag and Pr160gag-pol precursors, indicating that precursor processing was not required for primer tRNA incorporation. Second, viral particles containing only unprocessed Pr55gag protein did not selectively incorporate tRNA(Lys), while virions containing both unprocessed Pr55gag and Pr160gag-pol proteins demonstrated select tRNA(3Lys) packaging. Third, studies with a proviral mutant containing a deletion of most of the reverse transcriptase sequences and approximately one-third of the integrase sequence in the Pr160gag-pol precursor resulted in the loss of selective tRNA incorporation and an eightfold decrease in the amount of tRNA(3Lys) per two copies of genomic RNA. We have also confirmed herein finding of a previous study which indicated that the primer binding site is not required for the selective incorporation of tRNA(Lys).