22 resultados para Acid solutions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research was performed to determine whether it was technically feasible to use boronic acid extractants to purify and concentrate the sugars present in hemicellulose hydrolysates. Initially, five types of boronic acids (phenylboronic acid, 3,5-dimethylphenylboronic acid, 4-tert-butylphenylboronic acid, trans-β-styreneboronic acid or naphthalene-2-boronic acid) dissolved in an organic diluent (Shellsol® 2046 or Exxal® 10) containing the quaternary amine Aliquat® 336 were tested for their ability to extract sugars (fructose, glucose, sucrose and xylose) from a buffered, immiscible aqueous solution. Naphthalene- 2-boronic acid was found to give the greatest extraction of xylose regardless of which diluent was used. Trials were then conducted to extract xylose and glucose from solutions derived from the dilute acid hydrolysis of sugar cane bagasse and to then strip the loaded organic solutions using an aqueous solution containing hydrochloric acid. This produced a strip solution in which the xylose concentration had been increased over 7× that of the original hydrolysate while reducing the concentration of the undesirable acid-soluble lignin by over 90%. Hence, this process can be exploited to produce high concentration xylose solutions suitable for direct fermentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Praseodymium 4-hydroxycinnamate (Pr(4OHCin)3) was investigated as a novel corrosion inhibitor for steel in NaCl solutions, and found to be effective at inhibiting corrosion in both CO2-containing and naturally-aerated systems. Surface analysis results suggest that the corrosion inhibition ability of Pr(4OHCin)3 in the naturally-aerated corrosion system could be attributed to the formation of a continuous protective film. For the CO2-containing system, the corrosion inhibition efficiency of Pr(4OHCin)3 was predominantly because of formation of protective inhibiting deposits at the active electrochemical corrosion sites, in addition to a thinner surface film deposit. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colour removal and the flux behaviour of nanofiltration (NF-DOW FILMTEC-NF245) and forward osmosis (FO-a flat sheet cellulose triacetate membrane with a woven embedded backing support) membranes were investigated in this study. The NF membrane was employed to perform dye removal experiments with aqueous solutions containing 15 g/L of NaCl and different concentrations of Acid Green 25, Remazol Brilliant Orange FR and Remazol Blue BR dyes. The increase in dye concentration resulted in a decline in water permeability and an increase in colour removal. When the concentrations of dye solutions varied from 250 to 1000 mg/L, at 0.8 bar of trans-membrane pressure, the NF system exhibited a steady permeate flux of more 30 L/m2h and a colour removal of more than 99%; salt rejection was more than 20.0%. Furthermore, the FO system possessed high dye rejection efficiency (almost 100%), with low permeate flux of around 2.0 L/m2h, when using dye solutions as feed streams and seawater as draw stream. The mode of operation (either FO or pressure retarded osmosis (PRO) did not change the flux significantly but PRO mode always produced higher fluxes than FO mode under the operating conditions used in this study. While both NF and FO can be used to reduce the volume of effluent containing dyes from textile industries, the energy spent in NF on applied pressure can be substituted by the osmotic pressure of draw solution in FO when concentrated draw solutions such as sea water or reverse osmosis concentrate are readily available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Elsevier B.V. All rights reserved. A self-assembled multilayer (SAM) from sodium lauroyl sarcosinate (SLS) and glutamic acid (GLU) is formed on copper surface. Its inhibition ability against copper corrosion is examined by electrochemical analysis and weight loss test. In comparison to SAM formed by just SLS or GLU, a synergistic effect is observed when the coexistence of SLS and GLU in SAM. The SLS/GLU SAM has an acicular multilayer structure, and SAM prepared under the condition of 5 mM SLS and 1 mM GLU shows the best protection efficiency. PM6 calculation reveals that the synergistic effect stems from interactions between SLS, GLU and cupric ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a solution containing ammonium fluoride (NH4F) and nitric acid (HNO3) was used as an alternative to the conventional highly toxic pickling solution HF/HNO3 for pickling weldments of selected stainless steels including Type 316 stainless steel (UNS S31600), duplex stainless steel 2205 (UNS S32205), and super duplex stainless steel 2507 (UNS S32750). Electrochemical and surface analytical methods were used to understand the effects of pickling on the stainless steel weldments. Cyclic potentiodynamic polarization (CPP) test results indicated that the restoration of passivity of stainless steel weldments could be achieved by pickling the weldments in both HF/HNO3 solution and NH4F/HNO3 solutions. Scanning electron microscopy observation of the UNS S32750 weldment surface revealed that both the HF/HNO3 solution and the NH4F/HNO3 solution could remove the heat tint on the weldment. X-ray photoelectron spectroscopy analysis indicated that treatment in these two pickling solutions produced passive films with similar characteristics. Thus, this work suggests that the NH4F/HNO3 solution is a promising alternative to HF/HNO3 solution for the pickling of stainless steel weldments, and that the CPP test approach can be used in conjunction with surface analytical methods for further development of safer and environmentally friendly picklingsolutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mild steel infrastructure is constantly under corrosive attack in most environmental and industrial conditions. There is an ongoing search for environmentally friendly, highly effective inhibitor compounds that can provide a protective action in situations ranging from the marine environment to oil and gas pipelines. In this work an organic salt comprising a protic imidazolinium cation and a 4-hydroxycinnamate anion has been shown to produce a synergistic corrosion inhibition effect for mild steel in 0.01 M NaCl aqueous solutions under acidic, neutral, and basic conditions; an important and unusual phenomenon for one compound to support inhibition across a range of pH conditions. Significantly, the individual components of this compound do not inhibit as effectively at equivalent concentrations, particularly at pH 2. Immersion studies show the efficacy of these inhibitors in stifling corrosion as observed from optical, SEM, and profilometry experiments. The mechanism of inhibition appears to be dominated by anodic behavior where dissolution of the steel, and in particular the pitting process, is stifled. FTIR spectroscopy provides confirmation of a protective interfacial layer, with the observation of interactions between the steel surface and 4-hydroxycinnamate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a non-renewable resource, the rational exploitation of oil has attracted a large amount of attention. Among many methods for enhanced oil recovery, polymer flooding is the most suitable method of chemical flooding for non-marine reservoirs and therefore various modified acrylamide-based copolymers have been studied. In this study, a novel α-aminophosphonic acid-modified hydrophobic associating copolymer was successfully synthesized by copolymerization of acrylamide, acrylic acid, N-allyldodecanamide and 1-(dimethylamino)allylphosphonic acid. The copolymer was characterized by FT-IR, 1H NMR and thermogravimetry and exhibited superior water solubility and thickening capability. Subsequently, the shear resistance, temperature resistance and salt tolerance of the copolymer solution were investigated. The value of apparent viscosity retention of a 2000 mg L-1 copolymer solution was as high as 58.55 mPa s at a shear rate of 170 s-1 and remained at 40.20 mPa s at 120 °C. The values of apparent viscosity retention of 55.41 mPa s, 59.95 mPa s and 52.97 mPa s were observed in solutions of 10000 mg L-1 NaCl, 1200 mg L-1 MgCl2, and 1200 mg L-1 CaCl2, respectively. These were better than those of partially hydrolyzed polyacrylamide under the same conditions. In addition, an increase of up to 14.52% in the oil recovery rate compared with that for water flooding could be achieved in a core flooding test using a 2000 mg L-1 copolymer solution at 65 °C.