18 resultados para Acid soluble lignin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report a novel acrylamide copolymer with antimicrobial property as an enhanced oil recovery chemical. The copolymer was synthesized from acrylamide (AM), acrylic acid (AA) and 2-((2-(acryloyloxy)ethyl)dimethylammonio)ethyl sulfite (ADMES) using oxidation-reduction initiation system. Subsequently, the copolymer AM/AA/ADMES was evaluated and characterized on several aspects such as IR, 1H NMR, intrinsic viscosity, and dissolubility. The AM/AA/ADMES solution exerted remarkable thickening ability, salt tolerance ability and viscoelasticity. In addition, the rheological properties, temperature resistance ability and long-term stability of AM/AA/ADMES were investigated systematically in the presence of sulfate-reducing bacteria and relatively low viscosity loss could be obtained compared to partially hydrolyzed polyacrylamide. On the basis of core flooding experiments, AM/AA/ADMES was found to be a valuable prospect with 10.5 resistance factor, 4.6 residual resistance factor and up to 11.0% enhanced oil recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA), 3-(diallyl-amino)-2-hydroxypropyl sulfonate (NDS), acrylamide (AM) and acrylic acid (AA) were successfully utilized to prepare novel acrylamide-based copolymers (named AM/AA/NIMA and AM/AA/NDS/NIMA) which were functionalized by a combination of imidazoline derivative and/or sulfonate via redox free-radical polymerization. The two copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), viscosimetry, pyrene fluorescence probe, thermogravimetry (TG) and differential thermogravimetry (DTG). As expected, the polymers exhibited excellent thickening property, shear stability (viscosity retention rate 5.02% and 7.65% at 1000 s-1) and salt-tolerance (10:000 mg L-1 NaCl: viscosity retention rate up to 17.1% and 10.2%) in comparison with similar concentration partially hydrolyzed polyacrylamide (HPAM). The temperature resistance of the AM/AA/NDS/NIMA solution was also remarkably improved and the viscosity retention rate reached 54.8% under 110 °C. According to the core flooding tests, oil recovery could be enhanced by up to 15.46% by 2000 mg L-1 of the AM/AA/NDS/NIMA brine solution at 80 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles for a specific delivery are likely to be designed for cancer therapeutic effectiveness and improvement. In this study, a fucoidan-oleic acid conjugate was prepared and investigated in terms of loading capacity for poorly water-soluble anti-cancer drugs to maximize effectiveness of the treatment. Fucoidan was used as a hydrophilic portion of an amphiphilic structure for improving cancer therapeutic effects. Paclitaxel and curcumin were chosen as other model drugs loaded in the conjugates. The results showed that self-assembled nanoparticles with different sizes and morphologies could be prepared with two different concentrations of oleic acid as hydrophobic portion. Moreover, loading efficiency and release patterns of these drugs were mainly dependent on the hydrophobic interaction between drugs and oleic acid. It was also revealed that fucoidan and curcumin were released higher at pH 4.5 than at the physiological condition (pH 7.4), thus, facilitating the delivery and maximizing effects of the anticancer agents on cancer cells. On the contrary, paclitaxel from fucoidan nanoparticles was released faster at pH 7.4. The exploration of fucoidan–oleic acid conjugate could be considered as promising nanomedicines for cancer therapeutics.