95 resultados para ALUMINIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A torsional upset forging process is analysed on the basis of plasticity theory for powder metal forging. Torsional upset forging is a process to be performed by rotating a lower die with a punch travelling along the longitudinal direction of a work-piece. In this study, an upper bound analysis considering bulging effect, finite element method simulation (DEFORM3D), and experimental research have been performed for the process. A simple kinematically admissible velocity field for a three dimensional deformation is presented for the torsional upset forging of a cylindrical billet. Distributions of stress, strain, and forging load in the process have been obtained, and compared with those in conventional upset forging. In the process, an increase in a friction factor and rotation speed results in a decrease in magnitude of upset force, dead metal zone, and non-homogeneous deformation. This process can reduce forming load, which leads to improvement of die life, and also reduce bulging effect. In addition, the initial sintered-structure and density distribution is improved by the process and surface defect due to high deformation is decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glow-Discharge Optical Emission Spectrometry (GD-OES) is a powerful technique for the rapid analysis of elements in a solid surface as a function of depth. DC-GD-OES allows depth profiling on electrically conductive surfaces only, and has proven to be difficult for the analysis of insulating layers, such as oxides. However, the technique of radio-frequency (RF) GD-OES has the advantage of being able to depth profile through multiple layers, both conducting and insulating. In this work, a LECO GDS- 850A spectrometer was calibrated for aluminium, oxygen, and other elements, with the RF source installed. A quantitative depth profile for a sample of tempered aluminium alloy 7475 is presented and compared with earlier work[1,2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of an ongoing project, a life cycle inventory (LCI) of aluminium high pressure die casting (HPDC) has been collected. This has been conducted from the view of an individual product and also the entire process. The objective of the study was to analyse the process and suggest changes to reduce environmental impacts. One modem aluminium high pressure die casting plant located in Victoria, Australia was evaluated and modelled. Site specific data on energy and materials was gathered and the process was modelled using a typical automotive component. The paper also presents our experience and methodology used in this inventory data collection process from the real industry for LCA purposes. The inventory data collected itself reveals that the HPDC process is energy intensive and as such the major emissions were from the use of natural gas fired furnaces and from the brown coal derived electricity. It is also found the large environmental benefits of using secondary aluminium over primary aluminium in the HPDC process. A detailed LCA is being cal1ied out based on the inventory obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of experiments are reported for compression of an aluminum cylinder with monotonic and cyclic die rotation. When the die is monotonically rotated, a higher angular velocity or a lower compression speed of the tool leads to a greater load reduction in comparison of that seen with a stationary die. The test results also show that cyclic die rotation causes a cyclic fluctuation in the load-displacement curve. During the die deceleration phase, the compression load increases until it reaches the level obtained in conventional compression with stationary dies. However, the compression load is observed to reduce to levels lower than those obtained in monotonic rotating compression tests during the die acceleration phase. The frequency of rotating direction change seems to affect the position of load peaks only, not the amplitude of the peaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum alloy 6082 was subjected to equal-channel angular pressing (ECAP), which resulted in an ultra-fine-grained (UFG) microstructure with an average grain size of 0.2–0.4 μm. There was a pronounced effect of the grain refinement on the strain-rate sensitivity and tensile ductility. The Hart criterion of tensile necking fails to explain the observed ductility of the UFG material at low strain rates. A correlation between the observed stronger-than-expected ductility and a tendency to microshear band formation at low strain rates was established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of Lamb wave modes at varying frequencies with a through-thickness crack of different lengths in aluminium plates was analysed in terms of finite element method and experimental study. For oblique-wave incidence, both numerical and experimental results showed that the wave scattering from a crack leads to complicated transmission, reflection and diffraction accompanied by possible wave-mode conversion. A dual-PZT actuation scheme was therefore applied to generate the fundamental symmetrical mode (S0) with enhanced energy to facilitate the identification of crack-scattered wave components. The relationship between crack length and the reflection/transmission coefficient obtained with the aid of the Hilbert transform was established, through which the crack length was quantitatively evaluated. The effects of wavelength of Lamb waves and wave diffraction on the properties of the reflection and transmission coefficients were analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the relationship between the strain rate and the ductility and the underlying deformation mechanisms in an ultrafine-grained Al6082 alloy. At room temperature the uniform elongation of the material exhibits a marked increase with decreasing strain rate. This effect is related to the activation of micro shear banding, which is controlled by grain boundary sliding. The contribution of these mechanisms to uniform elongation is estimated. It is proposed that the grain boundary sliding suppresses the transformation of micro shear bands into macro shear bands. The activity of other deformation mechanisms during plastic deformation of the ultrafine-grained material is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium die casting is a process used to transform molten aluminium material into automotive gearbox housings, wheels and electronic components, among many other uses. It is used because it is a very efficient method of achieving near net shape with the required mechanical properties. Life Cycle Assessment (LCA) is a technique used to determine the environmental impacts of a product or process. The Life Cycle Inventory (LCI) is the initial phase of an LCA and describes which emissions will occur and which raw materials are used during the life of a product or during a process. This study has improved the LCI technique by adding in manufacturing and other costs to the ISO standardised methods. Although this is not new, the novel application and allocation methods have been developed independently. The improved technique has then been applied to Aluminium High Pressure Die Casting. In applying the improved LCI to this process, the cost in monetary terms and environmental emissions have been determined for a particular component manufactured by this process. A model has been developed in association with an industry partner so this technique can be repeatedly applied and used in the prediction of costs and emissions. This has been tested with two different products. Following this, specialised LCA software modelling of the aluminium high pressure die casting process was conducted. The variations in the process have shown that each particular component will have different costs and emissions and it is not possible to generalise the process by modelling only one component. This study has concentrated on one process within die casting but the techniques developed can be used across any variations in the die casting process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of strain path reversal on the macroscopic orientation of microbands in AA5052 have been studied using high resolution electron backscatter diffraction. Deformation was carried using two equal steps of forward/forward or forward/reverse torsion at a temperature of 300°C and strain rate of 1s-1 to a total equivalent tensile strain of 0.5. In both cases microbands were found in the majority of grains examined with many having more than one set. The microbands appear to cluster at specific angles to the macroscopic deformation. For the forward/forward condition microbands clustered around -20° and +45° to the maximum principle stress direction and at ± 30-35° to the principal strain direction. For the forward/reverse condition significantly more spread in microband angle was observed though peaks were visible at ±35° with respect to principal stress direction and at -40° and +30° with respect to the principal strain direction of the reverse torsion. This suggests the microbands formed in the forward deformation have or are dissolving and any new microbands formed are related to the deformation conditions of the final strain path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High purity Al single crystals of the Cube (0 0 1)[1 0 0] and rotated Cube (0 1 1)[0 1 ¯ 1] orientations have been deformed in plane strain compression in a channel die. Deformation was carried out at temperatures between 25 and 600 8C up to strains of 1.2. The as-deformed microstructure has been characterised using electron microscopy and electron backscattered diffraction (EBSD).
Annealing was carried out for various times and temperatures. The recrystallized microstructure has been studied using electron microscopy, and the orientation of recrystallized grains determined using EBSD. After cold deformation and annealing both orientations exhibited a random recrystallization texture component. After hot deformation both orientations retained a similar annealing texture to their starting deformation texture. The annealing texture of deformed single crystals was found to be more sensitive to the temperature of deformation than the stability of the orientation.