73 resultados para ACTIVATED PROTEIN-KINASES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein kinases, a family of enzymes, have been viewed as an important signaling intermediary by living organisms for regulating critical biological processes such as memory, hormone response and cell growth. The
unbalanced kinases are known to cause cancer and other diseases. With the increasing efforts to collect, store and disseminate information about the entire kinase family, it not only leads to valuable data set to understand cell regulation but also poses a big challenge to extract valuable knowledge about metabolic pathway from the data. Data mining techniques that have been widely used to find frequent patterns in large datasets can be extended and adapted to kinase data as well. This paper proposes a framework for mining frequent itemsets from the collected kinase dataset. An experiment using AMPK regulation data demonstrates that our approaches are useful and efficient in analyzing kinase regulation data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCα is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of ~60% of the catalytic activity of the mutant PKCα, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCα in immune complex kinase assays. The PKCα C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCα immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCα immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCα is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCα function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a family of serine/threonine protein kinases that are pivotal in cellular regulation. Since its discovery in 1977, PKCs have been known as cytosolic and peripheral membrane proteins. However, there are reports that PKC can insert into phospholipids vesicles in vitro. Given the intimate relationship between the plasma membrane and the activation of PKC, it is important to determine whether such “membrane-inserted” form of PKC exists in mammalian cells or tissues. Here, we report the identification of an integral plasma membrane pool for all the 10 PKC isozymes in vivo by their ability to partition into the detergent-rich phase in Triton X-114 phase partitioning, and by their resistance to extractions with 0.2 M sodium carbonate (pH 11.5), 2 M urea and 2 M sodium chloride. The endogenous integral membrane pool of PKC in mouse fibroblasts is found to be acutely regulated by phorbol ester or diacylglycerol, suggesting that this pool of PKC may participate in cellular processes known to be regulated by PKC. At least for PKCα, the C2–V3 region at the regulatory domain of the kinase is responsible for membrane integration. Further exploration of the function of this novel integral plasma membrane pool of PKC will not only shed new light on molecular mechanisms underlying its cellular functions but also provide new strategies for pharmaceutical modulation of this important group of kinases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. The nucleoside intermediate 5'-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) activates skeletal muscle AMP-activated protein kinase (AMPK) and increases glucose uptake. The AMPK phosphorylates neuronal nitric oxide synthase (nNOS)µ in skeletal muscle fibres. There is evidence that both AMPK and nNOSµ may be involved in the regulation of contraction-stimulated glucose uptake.
2. We examined whether both AICAR- and contraction-stimulated glucose uptake were mediated by NOS in rat skeletal muscle.
3. Rat isolated epitrochlearis muscles were subjected in vitro to electrically stimulated contractions for 10 min and/or incubated in the presence or absence of AICAR (2 mmol/L) or the NOS inhibitor NG-monomethyl-l-arginine (l-NMMA; 100 µmol/L).
4. Muscle contraction significantly (P < 0.05) altered the metabolic profile of the muscle. In contrast, AICAR and l-NMMA had no effect on the metabolic profile of the muscle, except that AICAR increased muscle 5'-aminoimidazole-4-carboxyamide-ribonucleotide (ZMP) and AICAR content. Nitric oxide synthase inhibition caused a small but significant (P < 0.05) reduction in basal 3-O-methylglucose transport, which was observed in all treatments. 5'-Aminoimidazole-4-carboxyamide-ribonucleoside significantly increased (P < 0.05) glucose transport above basal, with NOS inhibition decreasing this slightly (increased by 209% above basal compared with 184% above basal with NOS inhibition). Contraction significantly increased glucose transport above basal, with NOS inhibition substantially reducing this (107% increase vs 31% increase). 5'-Aminoimidazole-4-carboxyamide-ribonucleoside plus contraction in combination were not additive on glucose transport.
5. These results suggest that NO plays a role in basal glucose uptake and may regulate contraction-stimulated glucose uptake. However, NOS/nitric oxide do not appear to be signalling intermediates in AICAR-stimulated skeletal muscle glucose uptake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PRK1/PKN is a member of the protein kinase C (PKC) superfamily of serine/threonine protein kinases. Despite its important role as a RhoA effector, limited information is available regarding how this kinase is regulated. We show here that the last seven amino acid residues at the C-terminus is dispensable for the catalytic activity of PRK1 but is critical for the in vivo stability of this kinase. Surprisingly, the intact hydrophobic motif in PRK1 is dispensable for 3-phosphoinositide-dependent kinase-1 (PDK-1) binding and phosphorylation of the activation loop, as the PRK1-Δ940 mutant lacking the last two residues of the hydrophobic motif and the last 5 residues at the C-terminus interacts with PDK-1 in vivo and has a similar specific activity as the wild-type protein. We also found that the last four amino acid residues at the C-terminus of PRK1 is critical for the full lipid responsiveness as the PRK1-Δ942 deletion mutant is no longer activated by arachidonic acid. Our data suggest that the very C-terminus in PRK1 is critically involved in the control of the catalytic activity and activation by lipids. Since this very C-terminal segment is the least conserved among members of the PKC superfamily, it would be a promising target for isozyme-specific pharmaceutical interventions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exercise increases the metabolic capacity of skeletal muscle, which improves whole-body energy homeostasis and contributes to the positive health benefits of exercise. This is, in part, mediated by increases in the expression of a number of metabolic enzymes, regulated largely at the level of transcription. At a molecular level, many of these genes are regulated by the class II histone deacetylase (HDAC) family of transcriptional repressors, in particular HDAC5, through their interaction with myocyte enhancer factor 2 transcription factors. HDAC5 kinases, including 5′-AMP-activated protein kinase and protein kinase D, appear to regulate skeletal muscle metabolic gene transcription by inactivating HDAC5 and inducing HDAC5 nuclear export. These mechanisms appear to participate in exercise-induced gene expression and could be important for skeletal muscle adaptations to exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skeletal muscle adaptations to exercise confer many of the health benefits of physical activity and occur partly through alterations in skeletal muscle gene expression. The exact mechanisms mediating altered skeletal muscle gene expression in response to exercise are unknown. However, in recent years, chromatin remodelling through epigenetic histone modifications has emerged as a key regulatory mechanism controlling gene expression in general. The purpose of this study was to examine the effect of exercise on global histone modifications that mediate chromatin remodelling and transcriptional activation in human skeletal muscle in response to exercise. In addition, we sought to examine the signalling mechanisms regulating these processes. Following 60 min of cycling, global histone 3 acetylation at lysine 9 and 14, a modification associated with transcriptional initiation, was unchanged from basal levels, but was increased at lysine 36, a site associated with transcriptional elongation. We examined the regulation of the class IIa histone deacetylases (HDACs), which are enzymes that suppress histone acetylation and have been implicated in the adaptations to exercise. While we found no evidence of proteasomal degradation of the class IIa HDACs, we found that HDAC4 and 5 were exported from the nucleus during exercise, thereby removing their transcriptional repressive function. We also observed activation of the AMP-activated protein kinase (AMPK) and the calcium–calmodulin-dependent protein kinase II (CaMKII) in response to exercise, which are two kinases that induce phosphorylation-dependent class IIa HDAC nuclear export. These data delineate a signalling pathway that might mediate skeletal muscle adaptations in response to exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1.      Skeletal muscle oxidative function and metabolic gene expression are co-ordinately downregulated in metabolic diseases such as insulin resistance, obesity and Type 2 diabetes. Altering skeletal muscle metabolic gene expression to favour enhanced energy expenditure is considered a potential therapy to combat these diseases.

2.      Histone deacetylases (HDACs) are chromatin-remodelling enzymes that repress gene expression. It has been shown that HDAC4 and 5 co-operatively regulate a number of genes involved in various aspects of metabolism. Understanding how HDACs are regulated provides insights into the mechanisms regulating skeletal muscle metabolic gene expression.

3.      Multiple kinases control phosphorylation-dependent nuclear export of HDACs, rendering them unable to repress transcription. We have found a major role for the AMP-activated protein kinase (AMPK) in response to energetic stress, yet metabolic gene expression is maintained in the absence of AMPK activity. Preliminary evidence suggests a potential role for protein kinase D, also a Class IIa HDAC kinase, in this response.

4.      The HDACs are also regulated by ubiquitin-mediated proteasomal degradation, although the exact mediators of this process have not been identified.

5.      Because HDACs appear to be critical regulators of skeletal muscle metabolic gene expression, HDAC inhibition could be an effective therapy to treat metabolic diseases.

6.      Together, these data show that HDAC4 and 5 are critical regulators of metabolic gene expression and that understanding their regulation could provide a number of points of intervention for therapies designed to treat metabolic diseases, such as insulin resistance, obesity and Type 2 diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An acute bout of exercise increases skeletal muscle glucose uptake, improves glucose homeostasis and insulin sensitivity, and enhances muscle oxidative capacity. Recent studies have shown an association between these adaptations and the energy-sensing 5' AMP-activated protein kinase (AMPK), the activity of which is increased in response to exercise. Activation of AMPK has been associated with enhanced expression of key metabolic proteins such as GLUT-4, hexokinase II (HKII), and mitochondrial enzymes, similar to exercise. It has been hypothesized that AMPK might regulate gene and protein expression through direct interaction with the nucleus. The purpose of this study was to determine if nuclear AMPK α2 content in human skeletal muscle was increased by exercise. Following 60 min of cycling at 72 +/- 1% of VO2peak in six male volunteers (20.6 +/- 2.1 years; 72.9 +/- 2.1 kg; VO2peak = 3.62 +/- 0.18 l/min), nuclear AMPK α2 content was increased 1.9 +/- 0.4-fold (P = 0.024). There was no change in whole-cell AMPK α2 content or AMPK α2 mRNA abundance. These results suggest that nuclear translocation of AMPK might mediate the effects of exercise on skeletal muscle gene and protein expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Overexpression of GLUT4 in skeletal muscle enhances whole-body insulin action. Exercise increases GLUT4 gene and protein expression, and a binding site for the myocyte enhancer factor 2 (MEF-2) is required on the GLUT4 promoter for this response. However, the molecular mechanisms involved remain elusive. In various cell systems, MEF-2 regulation is a balance between transcriptional repression by histone deacetylases (HDACs) and transcriptional activation by the nuclear factor of activated T-cells (NFAT), peroxisome proliferator-activated receptor- coactivator 1 (PGC-1), and the p38 mitogen-activated protein kinase. The purpose of this study was to determine if these same mechanisms regulate MEF-2 in contracting human skeletal muscle. Seven subjects performed 60 min of cycling at 70% of Vo2peak. After exercise, HDAC5 was dissociated from MEF-2 and exported from the nucleus, whereas nuclear PGC-1 was associated with MEF-2. Exercise increased total and nuclear p38 phosphorylation and association with MEF-2, without changes in total or nuclear p38 protein abundance. This result was associated with p38 sequence-specific phosphorylation of MEF-2 and an increase in GLUT4 mRNA. Finally, we found no role for NFAT in MEF-2 regulation. From these data, it appears that HDAC5, PGC-1, and p38 regulate MEF-2 and could be potential targets for modulating GLUT4 expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is an E3 ubiquitin ligase that has an important role in regulating the degradation of cell surface receptors. In the present study we have examined the role of c-Cbl in whole-body energy homeostasis. c-Cb-/- mice exhibited a profound increase in whole-body energy expenditure as determined by increased core temperature and whole-body oxygen consumption. As a consequence, these mice displayed a decrease in adiposity, primarily due to a reduction in cell size despite an increase in food intake. These changes were accompanied by a significant
increase in activity (2- to 3-fold). In addition, cc-Cb-/- mice displayed a marked improvement in whole-body insulin action, primarily due to changes in muscle metabolism. We observed increased protein levels of the insulin receptor (4-fold) and uncoupling protein-3 (2-fold) in skeletal muscle and a significant increase in the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. These fmdings suggest that c-Cbl plays an integral role in whole-body fuel homeostasis by regulating whole-body energy expenditure and insulin action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene leading to a truncated protein have been identified in a cohort of neutropenia patients highly predisposed to acute myeloid leukemia. Such mutations act in a dominant manner resulting in hyperproliferation but impaired differentiation in response to G-CSF. This is due, at least in part, to defective internalization and loss of binding sites for several negative regulators, leading to sustained receptor activation. However, those signaling pathways responsible for mediating the hyperproliferative function have remained unclear. In this study, analysis of an additional G-CSF-R mutant confirmed the importance of residues downstream of Box 2 as important contributors to the sustained proliferation. However, maximal proliferation correlated with the ability to robustly activate signal transducer and activator of transcription (STAT) 5 in a sustained manner, whereas co-expression of dominant-negative STAT5, but not dominant-negative STAT3, was able to inhibit G-CSF-stimulated proliferation from a truncated receptor. Furthermore, a Janus kinase (JAK) inhibitor also strongly reduced the proliferative response, whereas inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) or phosphatidylinositol (PI) 3-kinase reduced proliferation to a lesser degree. These data suggest that sustained JAK2/STAT5 activation is a major contributor to the hyperproliferative function of truncated G-CSF receptors, with pathways involving MEK and PI 3-kinase playing a reduced role.