23 resultados para ABSORPTION-SPECTROSCOPY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

.A novel electrochemical sensing platform was developed based on flower-like gold–zinc oxide core–shell nanoparticles and a graphene nanocomposite-modified glassy carbon electrode. The gold–zinc oxide core–shell nanoflowers were synthesized by seed growth and characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible absorption spectroscopy. The modified electrode provided good electrocatalytic properties, rapid response, high stability, and favorable reproducibility for determination of ascorbic acid. The performance of the sensor included a linear dynamic range from 1.0 × 10−7 to 6.0 × 10−4 M, a limit of detection of 3.9 × 10−8 M, and a sensitivity of 24.12 µA/mM. The nanocomposite also provided excellent selectivity and lower potential for the oxidation of ascorbic acid. The sensor was used for the determination of ascorbic acid in tablets with satisfactory results. This device provides rapid, simple, and selective determination of ascorbic acid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To meet the urgent requirement of determining trace Pb2+ and Cd2+ in seawater on site, herein we developed a simple but novel electrochemical method, named as double stripping voltammetry, using only a portable heavy metal analyzer. The proposed method consisted of three steps: First, the targeted heavy metal ions in bulk solution were concentrated onto an ionic liquid-graphite-based paste working electrode (ILGPE), which exhibits a dramatic ability of accumulation, by electrodeposition in the presence of Bi3+. Second, the three-electrode arrangement, including the ILGPE loaded with the reduced products, was transferred into 1.0mL acetate buffer solution, followed by a stripping procedure. Third, the measurement was performed with the other stripping voltammetry procedure by using a glassy carbon electrode as working electrode. Under optimum conditions, the linear range values for Pb2+ and Cd2+ in seawater were 0.2-3.2 μg/L and 0.1-3.2 μg/L, respectively. The concentrations of Pb2+ and Cd2+ in five real samples collected from coastal sites of Qingdao City were determined on site, and the results were in good agreement with that obtained with the atomic absorption spectroscopy method. In addition, the analytical performance of working electrode modified with Bi film by in situ mode was investigated in comparison with that by ex situ mode. The results showed that the in situ mode was much better than the ex situ one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advanced polymeric materials and their respective composites are fast becoming one of the world's most frequently used engineering materials. They find application in the manufacture of e.g. boat hulls, high performance motor vehicles, aircraft components and sports goods. Their high specific strength and specific stiffness give them the edge in applications where weight savings are critical, but their long-term durability is often questioned. These materials are susceptible to environmental conditions such as temperature and humidity. There is also a lack of relevant data, due to the long time-scales required for testing. In this study, the Raman technique has been used to monitor the degradation of two composite systems, namely: a rubber toughened vinylester material used in the marine industry and a high temperature bismaleimide/carbon fibre aerospace composite. Preliminary Raman studies show that the toughening rubber particles dispersed in the cured vinylester resin are leached out during hygrothermal ageing. The weight gain during ageing suggests that this leaching process occurs concurrently with the absorption of water molecules. An increase in the degree of cross-linking is observed when bismaleimide/carbon fibre composite is aged at high temperature. This cross- linking tendency decreases with increasing depth within the carbon fibre bundle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten anionic compounds, including four acidic dyes, were used to dope polypyrrole powder. The effects of the dopants on density, optical absorption and conductivity of the polypyrroles were studied. The presence of the dopant in the conducting polymer matrix was verified by ATR-FTIR spectroscopy. Density function theory (DFT) simulation was used to understand the effect of the dopants on the solid structure, optical absorption and energy band structures. Anthraquinone-2-sulfonic acid-doped polypyrrole yielded the highest conductivity. The dye-doped polypyrrole showed an enhancement in its UV–vis optical absorption.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemiluminescence, the production of light from a chemical reaction, has found widespread use in analytical chemistry. Both tris (2, 2’-bipyridyl) ruthenium (II) and acidic potassium permanganate are chemiluminescence reagents that have been employed for the determination of a diverse range of analytes. This thesis encompasses some fundamental investigations into the chemistry and spectroscopy of these chemiluminescence reactions as well as extending the scope of their analytical applications. Specifically, a simple and robust capillary electrophoresis chemiluminescence detection system for the determination of codeine, O6-methylcodeine and thebaine is described, based upon the reaction of these analytes with chemically generated tris(2,2'-bipyridyl)ruthenium(III) prepared in sulfuric acid (0.05 M). The reagent solution was contained in a glass detection cell, which also held both the capillary and the cathode. The resultant chemiluminescence was monitored directly using a photomultiplier tube mounted flush against the base of the detection cell. The methodology, which incorporated a field amplification sample introduction procedure, realised detection limits (3a baseline noise) of 5 x 10~8 M for both codeine and O6-methylcodeine and 1 x 10~7 M for thebaine. The relative standard deviations of the migration times and the peak areas for the three analytes ranged from 2.2 % up to 2.5 % and 1.9 % up to 4.6 % respectively. Following minor instrumental modifications, morphine, oripavine and pseudomorphine were determined based upon their reaction with acidic potassium permanganate in the presence of sodium polyphosphate. To ensure no migration of the permanganate anion occurred, the anode was placed at the detector end whilst the electroosmotic flow was reversed by the addition of hexadimethrine bromide (0.001% m/v) to the electrolyte. The three analytes were separated counter to the electroosmotic flow via their interaction with a-cyclodextrin. The methodology realised detection limits (3 x S/N) of 2.5 x 10~7 M for both morphine and oripavine and 5 x 10~7 M for pseudomorphine. The relative standard deviations of the migration times and the peak heights for the three analytes ranged from 0.6 % up to 0.8 % and 1.5% up to 2.1 % respectively. Further improvements were made by incorporating a co-axial sheath flow detection cell. The methodology was validated by comparing the results realised using this technique with those obtained by high performance liquid chromatography (HPLC), for the determination of both morphine and oripavine in seven industrial process liquors. A complimentary capillary electrophoresis procedure with UV-absorption detection was also developed and applied to the determination of morphine, codeine, oripavine and thebaine in nine process liquors. The results were compared with those achieved using a standard HPLC method. Although over eighty papers have appeared in the literature on the analytical applications of acidic potassium permanganate chemiluminescence, little effort has been directed towards identifying the origin of the luminescence. It was found that chemiluminescence was generated during the manganese(III), manganese(IV) and manganese(VII) oxidations of sodium borohydride, sodium dithionite, sodium sulfite and hydrazine sulfate in acidic aqueous solution. From the corrected chemiluminescence spectra, the wavelengths of maximum emission were 689 ± 5 nm and 734 ± 5 nm when the reactions were performed in sodium hexametaphosphate and sodium dihydrogenorthophosphate or orthophosphoric acid environments respectively. The corrected phosphorescence spectrum of manganese(II) sulfate in a solution of sodium hexametaphosphate at 77 K, exhibited two peaks with maxima at 688 nm and 730 nm. The chemical and spectroscopic evidence presented strongly supported the postulation that the emission was an example of solution phase chemically induced phosphorescence of manganese(II). Thereby confirming earlier predictions that the chemiluminescence from acidic potassium permanganate reactions originated from an excited manganese(II) species. Additionally, these findings have had direct analytical application in that manganese(IV) was evaluated as a new reagent for chemiluminescence detection. The oxidations of twenty five organic and inorganic species, with solublised manganese(IV), were found to elicit analytically useful chemiluminescence with detection limits (3 x S/N) for Mn(II), Fe(II), morphine and codeine of 5 x 10-8 M, 2.5 x 10-7 M, 7.5 x 10-8 M and 5 x 10-8M, respectively. The corrected emission spectra from four different analytes gave wavelengths of maximum emission in the range from 733 nm up to 740 nm indicating that these chemiluminescence reactions also shared a common emitting species, excited manganese(II). Whilst several analytical problems were addressed in this thesis and answers to certain questions regarding the fundamentals of acidic potassium permanganate chemiluminescence were proposed, there are several areas that would benefit from further research. These are outlined in the final chapter of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes ultra violet (UV) light shielding behaviour of Australian grown bamboo (Phyllostachys pubescens). Optical reflectance showed that untreated bamboo plant has UV absorption properties. To reveal the origin of the UV absorption property, its chemical components were extracted using several polar and non-polar solvents. The extracts in most of the polar and non-polar solvents showed UV absorption property. Protic polar solvents showed better ability to extract UV absorbing chemicals than aprotic and non-polar solvents, except hexane. The chemical components of bamboo were analysed by FT-IR spectroscopy and the findings were correlated with the UV absorbance characteristics. The results confirmed that the UV absorption ability of bamboo originates from nothing but lignin. It is thus indicated that the conventional methods to manufacture bamboo fibres, such as complete degumming or viscose methods, that involve the removal of lignin, cannot retain the unique UV absorption property of bamboo plant in bamboo fibres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence has become a widely used technique for applications in noninvasive diagnostic tissue spectroscopy. The standard model used for characterizing fluorescence photon transport in biological tissue is based on the diffusion approximation. On the premise that the total energy of excitation and fluorescent photon flows must be conserved, we derive the widely used diffusion equations in fluorescence spectroscopy and show that there must be an additional term to account for the transport of fluorescent photons. The significance of this additional term in modeling fluorescence spectroscopy in biological tissue is assessed.