279 resultados para chloride corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

 This research revealed the differences that occur when two forms of corrosion occur simultaneously in comparison to the individual corrosions, crevice and galvanic. It was shown that two forms of corrosion can actually reduce the amount of damage caused in selected conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion resistance and mechanical properties of nanocrystalline aluminium (Al) and Al-20. wt.%Cr alloys, synthesized by high-energy ball milling followed by spark plasma sintering, were investigated. Both alloys exhibited an excellent combination of corrosion resistance and compressive yield strength, which was attributed to the nanocrystalline structure, extended solubility, uniformly distributed fine particles, and homogenous microstructure induced by high-energy ball milling. This work demonstrates the possibilities of developing ultra-high strength Al alloys with excellent corrosion resistance, exploiting conventionally insoluble elements or alloying additions via suitable processing routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al-Fe alloys prepared with wide-ranging cooling rates (0.1. °C/s to 500. °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al-Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a hypothesis and its experimental validation that simultaneous improvement in the hardness and corrosion resistance of aluminium can be achieved by the combination of suitable processing route and alloying additions. More specifically, the corrosion resistance and hardness of Al- xCr (x= 0-10 wt.%) alloys as produced via high-energy ball milling were significantly higher than pure Al and AA7075-T651. The improved properties of the Al- xCr alloys were attributed to the Cr addition and high-energy ball milling, which caused nanocrystalline structure, extended solubility of Cr in Al, and uniformly distributed fine intermetallic phases in the Al-Cr matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface passivation of AZNd Mg alloy with Pr(NO3)3 is studied using scanning electrochemical microscopy (SECM) in surface generation/tip collection (SG/TC) and AC modes. Corrosion protection afforded by the Pr treatment and the degradation mechanism in a simulated biological environment was examined on a local scale and compared with non-treated AZNd. SG/TC mode results revealed a drastic decrease in H2 evolution due to the Pr treatment. Mapping the local insulating characteristics using AC-SECM showed higher conductivity of the surface where H2 evolution was most favorable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new amino acid derivative, namely Adenine-L-Alanine ramification (ALAR) was synthesized and investigated as a green corrosion inhibitor for X80 pipeline steel in 0.1 mol/L hydrochloric acid solution using the weight loss, AC impedance, and polarization curve method. The structure of the derivative was characterized by IR and UV–vis spectrum. The weight loss and AC impedance found that the inhibition efficiency increased with the increase in concentration of the inhibitor but decreased with rise in temperature, the corrosion inhibition efficiency attains 91.26% in 8 × 10−2 g/L concentration at 30 °C. The polarization studies showed that the studied amino acid derivative can be used as a corrosion inhibitor. The surface of inhibited and uninhibited specimens was analyzed by scanning electron microscopy and the adsorption of the inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. The quantum chemical descriptors such as the energy of highest occupied molecular orbital, energy of lowest unoccupied molecular orbital were calculated and the inhibition mechanism can be analyzed by the distribution of electrons. Analysis indicated that the inhibitor molecular and empty d orbital of metal forms the coordination bond, covers on the surface of metal, and prevents corrosion reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 by Nace International. This paper presents new experimental evidences on the capability of a novel electrochemical corrosion monitoring sensor, which was recently conceived, for measuring localized corrosion under disbonded pipeline coatings. The sensor's design includes an artificial crevice for simulating the conditions developed under disbonded coatings and an electrode array for measuring current density distribution over its surface. The sensor capabilities were further evaluated by studying the dependency of corrosion patterns and current density distribution on the Cathodic Protection (CP) potential applied upon immersion in an aqueous environment. At the less negative CP potential, a good correlation was found between the inhomogeneous corrosion distribution under the disbonded coating as measured by the sensor and actual metal loss and corrosion attack observed on its surface at the end of the test. At more negative CP potentials no corrosion was detected or observed on the sensor's surface. In addition, characteristic changes in the cathodic current distribution at different CP potentials illustrated the possibility of employing the sensor to obtain valuable feedback on the performance of a given CP setup, without requiring its interruption or compensation of IR-drops. Furthermore, the sensor's capability to detect some of the effects of overprotection were shown at the most negative CP potential applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipelines to, for instance, 100 years is the application of structural health monitoring and life prediction tools that are able to provide long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step in pipeline structural health monitoring is the enhancement of technological capabilities that are required for quantifying the effects of key factors influencing buried pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating damage and disbondment, cathodic shielding. The concept of in-situ monitoring and site-specific warning of pipeline corrosion is illustrated by a case of monitoring localised corrosion under disbonded coatings using a new corrosion monitoring probe. A basic principle that underpins the use of sensors to monitor localised corrosion has been presented: Localised corrosion and coating failure are not an accidental occurrence, it occurs as the result of fundamental thermodynamic instability of a metal exposed to a specific environment. Therefore corrosion and coating disbondment occurring on a pipeline will also occur on a sensor made of the same material and exposed to the same pipeline condition. Although the exact location of localised corrosion or coating disbondment could be difficult to pinpoint along the length of a buried pipeline, the ‘worst-case scenario’ and high risk pipeline sections and sites are predictable. Sensors can be embedded at these strategic sites to collect data that contain ‘predictor features’ signifying the occurrence of localised corrosion, CP failure, coating disbondment and degradation. Information from these sensors will enable pipeline owners to prioritise site survey and inspection operations, and to develop maintenance strategy to manage aged pipelines, rather than replace them.