279 resultados para chloride corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localised corrosion is typical on AA2024-T3 due to intermetallic particles embedded in the alloy. The effect of intermetallic compositions on corrosion are not yet fully understood. EPMA data on AA2024-T3 surfaces before and after a 16. min immersion, analyses the influence of intermetallic clustering on the severity attack at local sites. While sites with a high number of domains and a large S-phase surface area typically lead to severe attack, maximising these features did not always lead to severe corrosion attack. Cerium or praseodymium mercaptoacetate inhibited corrosion ring formation. The common trends observed from such attack sites was also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground pipeline corrosion monitoring is a complex technical challenge. Currently there is no corrosion monitoring probe that is able to provide in situ information on corrosion under disbonded coatings. This paper presents a proof of concept of a novel corrosion monitoring probe intended to simulate corrosion under disbonded pipeline coatings and monitor its rate under Cathodic Protection (CP). The probe's capabilities to measure corrosion rates and simulate disbonded coating conditions are illustrated by a typical experiment that involved testing of the probe in 0.1M NaCl at -850mVCSE. Estimated metal thickness losses based on results measured by the probe were compared against corrosion patterns and profilometry measurements of control specimens exposed to the same conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 In this study, the inhibitive performance of two pyridine derivatives as corrosion inhibitors for mild steel was examined under stagnant condition and hydrodynamic flow in HCl solution at 25. °C. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were employed. To explore the inhibitors adsorption mechanism, Langmuir isotherm and quantum chemical studies were used. The results of electrochemical measurements show that the inhibitor concentration has a positive effect on its efficiency while for hydrodynamic condition, it is vice versa. Corrosion attack morphologies were observed at stagnant and hydrodynamic conditions to verify qualitatively the results obtained by electrochemical methods. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five types of Mg-5Al alloys with different weight percentages of Zn ranging from 0 to 4 wt.% were examined using electrochemical techniques and surface analysis. The electrochemical results indicated that the Mg-5Al alloys containing Zn have a lower corrosion and hydrogen evolution rates than the Mg-5Al based specimens with a decrease of value being observed with the decrease in Zn content. Zn addition induced the precipitation of Mg-Al and Mg-Zn phases in the Mg matrix along with grain refinement and increased an interaction of Zn oxide with Mg and Al products serving as a corrosion barrier. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipeline to 100 years is the application of health monitoring and life prediction tools that are able to provide both long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step is the enhancement of technological capabilities that are required for understanding and quantifying the effects of key factors influencing buried steel pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors and electrochemical cells for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating cracking and disbondment, cathodic shielding, transit loss of cathodic protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a novel corrosion monitoring probe designed for simulating the conditions developed under disbonded coatings and for measuring current densities and their distribution over a simulated pipeline surface. The probe’s concept was experimentally evaluated via immersion tests under Cathodic Protection (CP) in high resistivity aqueous solution. Under the disbonded area, anodic currents as well as cathodic currents were both measured. Anodic current densities were used to calculate metal losses by means of Faraday’s law. Calculated corrosion patterns were compared with corrosion damage observed at the probe’s surface after a period of test. The probe’s working principles are explained in terms of simple electrochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of diluents to ionic liquids (ILs) has recently been shown to enhance the transport properties of ILs. In the context of electrolyte design, this enhancement allows the realisation of IL-based electrolytes for metal-air batteries and other storage devices. It is likely that diluent addition not only impacts the viscosity of the IL, but also the ion-ion interactions and structure. Here, we investigate the nano-structured 1-methyl-3-octylimidazolium chloride (OMImCl) with varying water concentrations in the presence of two metal salts, zinc chloride and magnesium chloride. We find that the choice of metal salt has a significant impact on the structure and transport properties of the system; this is explained by the water structuring and destructing properties of the metal salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Corrosion inhibition mechanisms on the aerospace alloy, AA2024-T3, was investigated for the inhibitor combination of rare earth metals and mercaptoacetate. The inhibitor demonstrated synergistic protection for AA2024-T3 from localised corrosion. It is intended to be a more environmentally friendly alternative to toxic chromate-based inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De-alloying of S-phase in AA2024-T3 in the presence chlorides, is well-known. However, it is unclear how rare earth mercaptoacetate inhibitors affect this process when immersed in a 0.1. M NaCl solution. This paper analyses data obtained using EPMA on AA2024-T3 surfaces before and after a 16. min immersion period. Cerium and praseodymium mercaptoacetate inhibited the de-alloying process of S-phase particles. Although no significant change in composition was observed for cathodic intermetallics, each appeared to participate in local corrosion reactions as evidenced by the development of surface oxides. Clustering between S-phase and one of the Cu-containing intermetallic domains was also evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sewer odour and corrosion is caused by the reduction of sulphide ions and the release of hydrogen sulphide gas (H2S) into the sewer atmosphere. The reduction of sulphide is determined by its dissipation rate which depends on many processes such as emission, oxidation and precipitation that prevail in wastewater environments. Two factors that mainly affect the dissipation of sulphide are sewer hydraulics and wastewater characteristics; modification to the latter by dosing certain chemicals is known as one of the mitigation strategies to control the dissipation of sulphide. This study investigates the dissipation of sulphide in the presence of NaOH, Mg(OH)2, Ca(NO3)2 and FeCl3 and the dissipation rate is developed as a function of hydraulic parameters such as the slope of the sewer and the velocity gradient. Experiments were conducted in a 18m experimental sewer pipe with adjustable slope to which, firstly no chemical was added and secondly each of the above mentioned chemicals was supplemented in turn. A dissipation rate constant of 2×10-6 for sulphide was obtained from experiments with no chemical addition. This value was then used to predict the sulphide concentration that was responsible for the emission of H2S gas in the presence of one of the above mentioned four chemicals. It was found that the performance of alkali substances (NaOH and Mg(OH)2) in suppressing the H2S gas emission was excellent while ferric chloride showed a moderate mitigating effect due to its slow reaction kinetics. Calcium nitrate was of little value since the wastewater used in this study experienced almost no biological growth. Thus the effectiveness of selected chemicals in suppressing H2S gas emission had the following order: NaOH ≥ Mg(OH)2 ≥ FeCl3 ≥ Ca(NO3)2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new method for measuring localized corrosion under disbonded coatings by means of an electrochemical sensor, denoted differential aeration sensor (DAS). It measures the distribution of electrochemical currents over an electrode array surface partially covered by a crevice that simulates a disbonded coating. The DAS has been evaluated using immersion tests at open circuit and under cathodic protection (CP) conditions. Under both conditions, anodic as well as cathodic current densities were detected within the crevice. A fundamental understanding for the detection of anodic currents under CP has been explained in terms of basic electrochemistry. Based on the current distribution data provided by the sensor, two different analysis methods have been used to estimate corrosion and its distribution. These methods consisted of a direct application of Faraday's Law to the anodic currents detected by the array, and on a sensor-specific method denoted corrected currents' method. It has been demonstrated that under diffusion controlled conditions this latter method produces a better corrosion estimation than the direct application of Faraday's Law. The corrected currents' method allowed the estimation of corrosion patterns outside the crevice under CP. Good correlation between electrochemical calculations and surface profilometry results has been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
Chloride ingress into concrete has long been known to decrease the service life of built infrastructure. Inadequate knowledge of the physical reasons associated with chloride diffusion into concrete could generate chloride penetration profiles that become meaningless for prediction of service life. In this study, the effects of pore closure (physical effect) and changes in chloride binding (chemical effect) on chloride diffusion through Australian General Purpose (GP) cement pastes were investigated. Through - diffusion tests and “in - and - out” diffusion tests were conducted to monitor the time - dependent chloride diffusion through cement pastes cured from 1 to 28 days. The through - diffusion test quantified the overall chloride diffusion behaviour at different stages of cement hydration, which was a combined result of physical and chemical processes controlling diffusion. The “in - and - out” test differentiated the contributions of the physical and chemical processes on the chloride diffusion at different stages of cement hydration. As expected, the reduction of chloride diffusivity was significant during the first two weeks of curing, most likely attributed to the significant reduction of porosity as well as establishment of capillary discontinuities within the pore structure. It was also observed that the amount of bound chloride was not constant but increased significantly from 1 to 28 days of curing age.