266 resultados para Crevice corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AA2024-Tx is one of the most common high-strength aluminium alloys used in the aerospace industry. This article reviews current understanding of the microstructure of sheet AA2024-T3 and chronicles the emergence of new compositions for constituent particles as well as reviews older literature to understand the source of the original compositions. The review goes on to summarise older and more recent studies on corrosion of AA2024-T3, drawing attention to areas of corrosion initiation and propagation. It pays particular attention to modern approaches to corrosion characterisation as obtained through microelectrochemical techniques and physicochemical characterisation, which provide statistical assessment of factors that contribute to corrosion of AA2024. These approaches are also relevant to other alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion resistance and mechanical properties of nanocrystalline aluminium (Al) and Al-20. wt.%Cr alloys, synthesized by high-energy ball milling followed by spark plasma sintering, were investigated. Both alloys exhibited an excellent combination of corrosion resistance and compressive yield strength, which was attributed to the nanocrystalline structure, extended solubility, uniformly distributed fine particles, and homogenous microstructure induced by high-energy ball milling. This work demonstrates the possibilities of developing ultra-high strength Al alloys with excellent corrosion resistance, exploiting conventionally insoluble elements or alloying additions via suitable processing routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al-Fe alloys prepared with wide-ranging cooling rates (0.1. °C/s to 500. °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al-Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Elsevier B.V. All rights reserved. A self-assembled multilayer (SAM) from sodium lauroyl sarcosinate (SLS) and glutamic acid (GLU) is formed on copper surface. Its inhibition ability against copper corrosion is examined by electrochemical analysis and weight loss test. In comparison to SAM formed by just SLS or GLU, a synergistic effect is observed when the coexistence of SLS and GLU in SAM. The SLS/GLU SAM has an acicular multilayer structure, and SAM prepared under the condition of 5 mM SLS and 1 mM GLU shows the best protection efficiency. PM6 calculation reveals that the synergistic effect stems from interactions between SLS, GLU and cupric ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two quinoline derivatives, 8-aminoquinoline (8-AQ) and 8-nitroquinoline (8-NQ), have been used as inhibitors to examine their corrosion protection effect on AA5052 aluminium alloy in 3% NaCl solution. The weight-loss and electrochemical measurement have indicated that 8-AQ and 8-NQ play as anodic inhibitor to retard the anodic electrochemical process. SEM/EDS analysis clearly shows that 8-AQ and 8-NQ form a protective film on the AA5052 alloy surface. Density functional theory (DFT) calculation confirmed the formation of strong hybridization between the p-orbital of reactive sites in the inhibitor molecules and the sp-orbital of the Al atom. 8-aminoquinoline and 8-nitroquinoline may be useful as effective corrosion inhibitors for aluminium alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a hypothesis and its experimental validation that simultaneous improvement in the hardness and corrosion resistance of aluminium can be achieved by the combination of suitable processing route and alloying additions. More specifically, the corrosion resistance and hardness of Al- xCr (x= 0-10 wt.%) alloys as produced via high-energy ball milling were significantly higher than pure Al and AA7075-T651. The improved properties of the Al- xCr alloys were attributed to the Cr addition and high-energy ball milling, which caused nanocrystalline structure, extended solubility of Cr in Al, and uniformly distributed fine intermetallic phases in the Al-Cr matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface passivation of AZNd Mg alloy with Pr(NO3)3 is studied using scanning electrochemical microscopy (SECM) in surface generation/tip collection (SG/TC) and AC modes. Corrosion protection afforded by the Pr treatment and the degradation mechanism in a simulated biological environment was examined on a local scale and compared with non-treated AZNd. SG/TC mode results revealed a drastic decrease in H2 evolution due to the Pr treatment. Mapping the local insulating characteristics using AC-SECM showed higher conductivity of the surface where H2 evolution was most favorable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new amino acid derivative, namely Adenine-L-Alanine ramification (ALAR) was synthesized and investigated as a green corrosion inhibitor for X80 pipeline steel in 0.1 mol/L hydrochloric acid solution using the weight loss, AC impedance, and polarization curve method. The structure of the derivative was characterized by IR and UV–vis spectrum. The weight loss and AC impedance found that the inhibition efficiency increased with the increase in concentration of the inhibitor but decreased with rise in temperature, the corrosion inhibition efficiency attains 91.26% in 8 × 10−2 g/L concentration at 30 °C. The polarization studies showed that the studied amino acid derivative can be used as a corrosion inhibitor. The surface of inhibited and uninhibited specimens was analyzed by scanning electron microscopy and the adsorption of the inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. The quantum chemical descriptors such as the energy of highest occupied molecular orbital, energy of lowest unoccupied molecular orbital were calculated and the inhibition mechanism can be analyzed by the distribution of electrons. Analysis indicated that the inhibitor molecular and empty d orbital of metal forms the coordination bond, covers on the surface of metal, and prevents corrosion reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Institute of Materials, Minerals and Mining. Published by Maney on behalf of the Institute. This paper describes an interesting attempt to quantitatively evaluate the corrosion behaviour of base oils using a novel approach based on electrochemical techniques. The present study evaluates the corrosion behaviour of biodegradable base oils with and without additives in an aqueous chloride solution using electrochemical measurements. Potentiodynamic polarisation and electrochemical impedance spectroscopy techniques were used to quantitatively determine the corrosion behaviour of these oils, and the results were compared to the conventional immersion tests. Both these electrochemical measurements were carried out in a three-electrode system where AS1020 mild steel alloy was used as a working electrode in a purpose made pipette cell. The results obtained from the electrochemical measurements help to evaluate the best biodegradable base oil for formulating eco-friendly industrial lubricants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipelines to, for instance, 100 years is the application of structural health monitoring and life prediction tools that are able to provide long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step in pipeline structural health monitoring is the enhancement of technological capabilities that are required for quantifying the effects of key factors influencing buried pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating damage and disbondment, cathodic shielding. The concept of in-situ monitoring and site-specific warning of pipeline corrosion is illustrated by a case of monitoring localised corrosion under disbonded coatings using a new corrosion monitoring probe. A basic principle that underpins the use of sensors to monitor localised corrosion has been presented: Localised corrosion and coating failure are not an accidental occurrence, it occurs as the result of fundamental thermodynamic instability of a metal exposed to a specific environment. Therefore corrosion and coating disbondment occurring on a pipeline will also occur on a sensor made of the same material and exposed to the same pipeline condition. Although the exact location of localised corrosion or coating disbondment could be difficult to pinpoint along the length of a buried pipeline, the ‘worst-case scenario’ and high risk pipeline sections and sites are predictable. Sensors can be embedded at these strategic sites to collect data that contain ‘predictor features’ signifying the occurrence of localised corrosion, CP failure, coating disbondment and degradation. Information from these sensors will enable pipeline owners to prioritise site survey and inspection operations, and to develop maintenance strategy to manage aged pipelines, rather than replace them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of neodymium (Nd) on the microstructures, mechanical properties, in vitro corrosion behavior, and cytotoxicity of as-cast Mg- 1Mn-2Zn-xNd alloys (x = 0.5, 1.0, 1.5, mass%) have been investigated to assess whether Nd is an effective element to increase the strength and corrosion resistance of Mg alloys, and to evaluate whether those alloys are suitable for biomedical applications. The microstructures were examined by X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was studied using electrochemical measurement and cytotoxicity was evaluated using osteoblast-like SaOS2 cell. The results indicate that all the cast Mg-1Mn-2Zn-xNd alloys are composed of both alpha phase of magnesium (Mg) and a compound of Mg7Zn3, and their grain sizes decrease with Nd content. Nd is not an effective element to improve the strength and corrosion resistance of cast Mg-Mn-Zn alloys. Increase of Nd content from 0.5 to 1.5 does not significantly change biocompatibility of alloys. The cast alloys exhibit much better corrosion resistance than pure Mg and good biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mild steel infrastructure is constantly under corrosive attack in most environmental and industrial conditions. There is an ongoing search for environmentally friendly, highly effective inhibitor compounds that can provide a protective action in situations ranging from the marine environment to oil and gas pipelines. In this work an organic salt comprising a protic imidazolinium cation and a 4-hydroxycinnamate anion has been shown to produce a synergistic corrosion inhibition effect for mild steel in 0.01 M NaCl aqueous solutions under acidic, neutral, and basic conditions; an important and unusual phenomenon for one compound to support inhibition across a range of pH conditions. Significantly, the individual components of this compound do not inhibit as effectively at equivalent concentrations, particularly at pH 2. Immersion studies show the efficacy of these inhibitors in stifling corrosion as observed from optical, SEM, and profilometry experiments. The mechanism of inhibition appears to be dominated by anodic behavior where dissolution of the steel, and in particular the pitting process, is stifled. FTIR spectroscopy provides confirmation of a protective interfacial layer, with the observation of interactions between the steel surface and 4-hydroxycinnamate.