213 resultados para Vegetable extracts. Corrosion inhibitors. AISI 1020 carbon steel. linear polarization resistence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Institute of Materials, Minerals and Mining. Published by Maney on behalf of the Institute. This paper describes an interesting attempt to quantitatively evaluate the corrosion behaviour of base oils using a novel approach based on electrochemical techniques. The present study evaluates the corrosion behaviour of biodegradable base oils with and without additives in an aqueous chloride solution using electrochemical measurements. Potentiodynamic polarisation and electrochemical impedance spectroscopy techniques were used to quantitatively determine the corrosion behaviour of these oils, and the results were compared to the conventional immersion tests. Both these electrochemical measurements were carried out in a three-electrode system where AS1020 mild steel alloy was used as a working electrode in a purpose made pipette cell. The results obtained from the electrochemical measurements help to evaluate the best biodegradable base oil for formulating eco-friendly industrial lubricants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stainless steel is the most widely used alloys of steel. The reputed variety of stainless steel having customised material properties as per the design requirements is Duplex Stainless Steel and Austenitic Stainless Steel. The Austenite Stainless Steel alloy has been developed further to be Super Austenitic Stainless Steel (SASS) by increasing the percentage of the alloying elements to form the half or more than the half of the material composition. SASS (Grade-AL-6XN) is an alloy steel containing high percentages of nickel (24%), molybdenum (6%) and chromium (21%). The chemical elements offer high degrees of corrosion resistance, toughness and stability in a large range of hostile environments like petroleum, marine and food processing industries. SASS is often used as a commercially viable substitute to high cost non-ferrous or non-metallic metals. The ability to machine steel effectively and efficiently is of utmost importance in the current competitive market. This paper is an attempt to evaluate the machinability of SASS which has been a classified material so far with very limited research conducted on it. Understanding the machinability of this alloy would assist in the effective forming of this material by metal cutting. The novelty of research associated with this is paper is reasonable taking into consideration the unknowns involved in machining SASS. The experimental design consists of conducting eight milling trials at combination of two different feed rates, 0.1 and 0.15 mm/tooth; cutting speeds, 100 and 150 m/min; Depth of Cut (DoC), 2 and 3 mm and coolant on for all the trials. The cutting tool has two inserts and therefore has two cutting edges. The trial sample is mounted on a dynamometer (type 9257B) to measure the cutting forces during the trials. The cutting force data obtained is later analyzed using DynaWare supplied by Kistler. The machined sample is subjected to surface roughness (Ra) measurement using a 3D optical surface profilometer (Alicona Infinite Focus). A comprehensive metallography process consisting of mounting, polishing and etching was conducted on a before and after machined sample in order to make a comparative analysis of the microstructural changes due to machining. The microstructural images were capture using a digital microscope. The microhardness test were conducted on a Vickers scale (Hv) using a Vickers microhardness tester. Initial bulk hardness testing conducted on the material show that the alloy is having a hardness of 83.4 HRb. This study expects an increase in hardness mostly due to work hardening may be due to phase transformation. The results obtained from the cutting trials are analyzed in order to judge the machinability of the material. Some of the criteria used for machinability evaluation are cutting force analysis, surface texture analysis, metallographic analysis and microhardness analysis. The methodology followed in each aspect of the investigation is similar to and inspired by similar research conducted on other materials. However, the novelty of this research is the investigation of various aspects of machinability and drawing comparisons between each other while attempting to justify each result obtained to the microstructural changes observed which influence the behaviour of the alloy. Due to the limited scope of the paper, machinability criteria such as chip morphology, Metal Removal Rate (MRR) and tool wear are not included in this paper. All aspects are then compared and the optimum machining parameters are justified with a scope for future investigations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter investigates two important processing methods, such as welding and machine of duplex stainless steel. The welding process welding generally degrades the properties of these materials by redistributing the phases during melting and solidification. On the other hand, the redistribution during machining mainly take place combined effect of stress, strain rate and temperature. Mechanism of machining process and several welding methods has been analysed in details. It was found that outcomes of welding processes depend on the welding methods. Most of the cases an appropriate annealing process can be used to restore the expected properties of the weld joints though the parameters of annealing process are different in different welding methods. Nonmetallic inclusions and the low carbon content of duplex stainless steel reduce the machinability of duplex stainless steel. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Abrasion and adhesion were the most common wear modes developed on the flank and rake faces. Adhesion wear being the most prevalent on the flank face, appeared to be initiated by built-up edge formation.