240 resultados para Fuzzy similarity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solving fuzzy linear programming (FLP) requires the employment of a consistent ranking of fuzzy numbers. Ineffective fuzzy number ranking would lead to a flawed and erroneous solving approach. This paper presents a comprehensive and extensive review on fuzzy number ranking methods. Ranking techniques are categorised into six classes based on their characteristics. They include centroid methods, distance methods, area methods, lexicographical methods, methods based on decision maker's viewpoint, and methods based on left and right spreads. A survey on solving approaches to FLP is also reported. We then point out errors in several existing methods that are relevant to the ranking of fuzzy numbers and thence suggest an effective method to solve FLP. Consequently, FLP problems are converted into non-fuzzy single (or multiple) objective linear programming based on a consistent centroid-based ranking of fuzzy numbers. Solutions of FLP are then obtained by solving corresponding crisp single (or multiple) objective programming problems by conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Some illustrative examples are provided to identify the ineffective and unrealistic characteristics of existing approaches to solving fuzzy linear programming (FLP) problems (with single or multiple objectives). We point out the error in existing methods concerning the ranking of fuzzy numbers and thence suggest an effective method to solve the FLP. Based on the consistent centroid-based ranking of fuzzy numbers, the FLP problems are transformed into non-fuzzy single (or multiple) objective linear programming. Solutions of FLP are then crisp single or multiple objective programming problems, which can respectively be obtained by conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forecasting behavior of the high volatile and unpredictable wind power energy has always been a challenging issue in the power engineering area. In this regard, this paper proposes a new multi-objective framework based on fuzzy idea to construct optimal prediction intervals (Pis) to forecast wind power generation more sufficiently. The proposed method makes it possible to satisfy both the PI coverage probability (PICP) and PI normalized average width (PINAW), simultaneously. In order to model the stochastic and nonlinear behavior of the wind power samples, the idea of lower upper bound estimation (LUBE) method is used here. Regarding the optimization tool, an improved version of particle swam optimization (PSO) is proposed. In order to see the feasibility and satisfying performance of the proposed method, the practical data of a wind farm in Australia is used as the case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After studying several reduction algorithms that can be found in the literature, we notice that there is not an axiomatic definition of this concept. In this work we propose the definition of weak reduction operators and we propose the properties of the original image that reduced images must keep. From this definition, we study whether two methods of image reduction, undersampling and fuzzy transform, satisfy the conditions of weak reduction operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enhanced fuzzy min-max (EFMM) network is proposed for pattern classification in this paper. The aim is to overcome a number of limitations of the original fuzzy min-max (FMM) network and improve its classification performance. The key contributions are three heuristic rules to enhance the learning algorithm of FMM. First, a new hyperbox expansion rule to eliminate the overlapping problem during the hyperbox expansion process is suggested. Second, the existing hyperbox overlap test rule is extended to discover other possible overlapping cases. Third, a new hyperbox contraction rule to resolve possible overlapping cases is provided. Efficacy of EFMM is evaluated using benchmark data sets and a real medical diagnosis task. The results are better than those from various FMM-based models, support vector machine-based, Bayesian-based, decision tree-based, fuzzy-based, and neural-based classifiers. The empirical findings show that the newly introduced rules are able to realize EFMM as a useful model for undertaking pattern classification problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we proposed an adaptive fuzzy multi-surface sliding control (AFMSSC) for trajectory tracking of 6 degrees of freedom inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). It is shown that an adaptive fuzzy logic-based function approximator can be used to estimate the system uncertainties and an iterative multi-surface sliding control design can be carried out to control flight. Using AFMSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. It is proved that the AFMSSC system guarantees asymptotic output tracking and ultimate uniform boundedness of the tracking error. Simulation results are presented to validate the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social network analysis (SNA) is believed to be capable of revealing significant insights into crime and terror groups, including identifying important individuals and unique approaches to disruption. However, SNA has a number of theoretical and practical limitations, particularly when applied to ‘dark’ networks. While most analysts certainly acknowledge at least some of these limitations, we need to know more about their potential impact in a crime intelligence context. This article aims to go some way towards that end by placing greater scrutiny on the problem of ‘fuzzy boundaries’ when applied to small group networks. SNA is applied to the groups responsible for the 7 July 2005 London bombings and the 21 July 2005 attempted London bombings. The article concludes that while SNA is a valuable tool for understanding crime and terror groups, the age-old problem of fuzzy boundaries can have a profound impact on the analysis of small dynamic networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When no prior knowledge is available, clustering is a useful technique for categorizing data into meaningful groups or clusters. In this paper, a modified fuzzy min-max (MFMM) clustering neural network is proposed. Its efficacy for tackling power quality monitoring tasks is demonstrated. A literature review on various clustering techniques is first presented. To evaluate the proposed MFMM model, a performance comparison study using benchmark data sets pertaining to clustering problems is conducted. The results obtained are comparable with those reported in the literature. Then, a real-world case study on power quality monitoring tasks is performed. The results are compared with those from the fuzzy c-means and k-means clustering methods. The experimental outcome positively indicates the potential of MFMM in undertaking data clustering tasks and its applicability to the power systems domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new portfolio risk measure that is the uncertainty of portfolio fuzzy return is introduced in this paper. Beyond the well-known Sharpe ratio (i.e., the reward-to-variability ratio) in modern portfolio theory, we initiate the so-called fuzzy Sharpe ratio in the fuzzy modeling context. In addition to the introduction of the new risk measure, we also put forward the reward-to-uncertainty ratio to assess the portfolio performance in fuzzy modeling. Corresponding to two approaches based on TM and TW fuzzy arithmetic, two portfolio optimization models are formulated in which the uncertainty of portfolio fuzzy returns is minimized, while the fuzzy Sharpe ratio is maximized. These models are solved by the fuzzy approach or by the genetic algorithm (GA). Solutions of the two proposed models are shown to be dominant in terms of portfolio return uncertainty compared with those of the conventional mean-variance optimization (MVO) model used prevalently in the financial literature. In terms of portfolio performance evaluated by the fuzzy Sharpe ratio and the reward-to-uncertainty ratio, the model using TW fuzzy arithmetic results in higher performance portfolios than those obtained by both the MVO and the fuzzy model, which employs TM fuzzy arithmetic. We also find that using the fuzzy approach for solving multiobjective problems appears to achieve more optimal solutions than using GA, although GA can offer a series of well-diversified portfolio solutions diagrammed in a Pareto frontier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear, noisy and outlier characteristics of electroencephalography (EEG) signals inspire the employment of fuzzy logic due to its power to handle uncertainty. This paper introduces an approach to classify motor imagery EEG signals using an interval type-2 fuzzy logic system (IT2FLS) in a combination with wavelet transformation. Wavelet coefficients are ranked based on the statistics of the receiver operating characteristic curve criterion. The most informative coefficients serve as inputs to the IT2FLS for the classification task. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II, are employed for the experiments. Classification performance is evaluated using accuracy, sensitivity, specificity and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, AdaBoost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The wavelet-IT2FLS method considerably dominates the comparable classifiers on both datasets, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II by 1.40% and 2.27% respectively. The proposed approach yields great accuracy and requires low computational cost, which can be applied to a real-time BCI system for motor imagery data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an approach to classify EEG signals using wavelet transform and a fuzzy standard additive model (FSAM) with tabu search learning mechanism. Wavelet coefficients are ranked based on statistics of the Wilcoxon test. The most informative coefficients are assembled to form a feature set that serves as inputs to the tabu-FSAM. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II are employed for the experiments. Classification performance is evaluated using accuracy, mutual information, Gini coefficient and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, ensemble learning Adaboost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The proposed tabu-FSAM method considerably dominates the competitive classifiers, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—Nowadays, classical washout filters are extensively used in commercial motion simulators. Even though there are several advantages for classical washout filters, such as short processing time, simplicity and ease of adjustment, they have several shortcomings. The main disadvantage is the fixed scheme and parameters of the classical washout filter cause inflexibility of the structure and thus the resulting simulator fails to suit all circumstances. Moreover, it is a conservative approach and the platform cannot be fully exploited. The aim of this research is to present a fuzzy logic approach and take the human perception error into account in the classical motion cueing algorithm, in order to improve both the physical limits of restitution and realistic human sensations. The fuzzy compensator signal is applied to adjust the filtered signals on the longitudinal and rotational channels online, as well as the tilt coordination to minimize the vestibular sensation error below the human perception threshold. The results indicate that the proposed fuzzy logic controllers significantly minimize the drawbacks of having fixed parameters and conservativeness in the classical washout filter. In addition, the performance of motion cueing algorithm and human perception for most occasions is improved.