204 resultados para textile


Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Evolved over millions of years’ natural selection, very thin and lightweight wild silkworm cocoons can protect silkworms from environmental hazards and physical attacks from predators while supporting their metabolic activity. The knowledge of structure-property-function relationship of multi-layered composite silk cocoon shells gives insight into the design of next-generation protection materials. The mechanical and thermal insulation properties of both domestic (Bombyx mori, or B. moriand Samia. cynthia, or S. cynthia) and wild (Antheraea pernyi and Antheraea mylitta, or A. pernyi and A. mylitta) silkworm cocoons were investigated. The research findings are of relevance to the bio-inspired design of new protective materials and structures.
The 180 degree peel tests and needle penetration tests were used for examining the peel resistance and needle penetration resistance of both domestic and wild silkworm cocoon walls. The temperatures inside and outside of the whole silkworm cocoons under warm, cold and windy conditions were monitored for investigating the cocoon’s thermal insulation function. Computational fluid dynamics (CFD) models were created to simulate the heat transfer through the A. pernyi cocoon wall.
The wild cocoons experienced much higher peeling peak loads than the domestic cocoon. This transfers to a maximum work-of-fracture (WOF) of about 1000 J/m2 from the A. pernyi outer layer, which was 10 times of the B. mori cocoon. The A. pernyi wild cocoon exhibited a maximum penetration force (11 N) that is 70 % higher than a woven aramid fabric. Silk sericin is shown to play a critical role in providing needle penetration resistance of the non-woven composite cocoon structure by restricting the relative motion of fibres, which prevents the sharp tip of the needle from pushing aside fibres and penetrating between them. The wild A. pernyi cocoon exhibits superior thermal buffer over the domestic B. mori cocoon. The unique structure of the A. pernyi cocoon wall with mineral crystals deposited on the cocoon outer surface, can prohibit most of the air from flowing inside of the cocoon structure, which shows strong wind resistance under windy conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationships were investigated between the prickle discomfort scores, assessed by human response from wearer trial garment assessment, and sleeve trial, Wool ComfortMeter (WCM) and Wool HandleMeter (WHM) assessments of fabrics, and fiber diameter characteristics including mean fiber diameter (MFD). Sleeve trial assessment followed exercise, the use of a control sleeve to reduce participant variance and four sensory traits. WHM provides eight handle parameters calibrated against a panel of experts. Four scenarios were evaluated: sleeve trial assessment with MFD; sleeve trial assessment with MFD and WCM; sleeve trial assessment with MFD, WCM and WHM parameters; and sleeve trial assessment with WCM and WHM parameters. Data were analyzed using correlation and forward stepwise general linear modeling. There was no evidence that the incidence of fibers coarser than 30 µm aided the prediction of prickle discomfort once MFD had been accounted for in the models. There were significant correlations between the WCM measurement and each sleeve trial attribute. There was no significant correlation between WHM parameters and sleeve trial assessments. The sleeve trial attribute of ‘skin feel’ offers potential to improve the predictions made of wearer trial prickle discomfort when used in association of the WCM with or without data on fabric MFD. There was little evidence to support using WHM parameters with or without the WCM in predicting wearer assessed prickle discomfort of fabrics. These results indicate that the rapid evaluation of fabrics using sleeve trial assessment can provide cost effective ranking of consumer preferences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear (fiber or yarn) supercapacitors have demonstrated remarkable cyclic electrochemical performance as power source for wearable electronic textiles. The challenges are, first, to scale up the linear supercapacitors to a length that is suitable for textile manufacturing while their electrochemical performance is maintained or preferably further improved and, second, to develop practical, continuous production technology for these linear supercapacitors. Here, we present a core/sheath structured carbon nanotube yarn architecture and a method for one-step continuous spinning of the core/sheath yarn that can be made into long linear supercapacitors. In the core/sheath structured yarn, the carbon nanotubes form a thin surface layer around a highly conductive metal filament core, which serves as current collector so that charges produced on the active materials along the length of the supercapacitor are transported efficiently, resulting in significant improvement in electrochemical performance and scale up of the supercapacitor length. The long, strong, and flexible threadlike supercapacitor is suitable for production of large-size fabrics for wearable electronic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein fibre wastes from animal hairs, feathers and insect secreted filaments can be aptly utilized by converting them into ultra-fine particles. Particles from animal protein fibres present large surface-to-weight ratio and significantly enhanced surface reactivity, that have opened up novel applications in both textile and non-textile fields. This review article summarizes the state-of-the-art routes to fabricate ultrafine particles from animal protein fibres, including direct route of mechanical milling of fibres and indirect route from fibre proteins. Ongoing research trends in novel applications of protein fibre particles in various fields, such as biomedical science, environmental protection and composite structures are presented. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large, chronic perforations of the tympanic membrane or eardrum can cause hearing loss as well as a range of secondary health problems. Current methods of repair usually involve grafting a material such as cartilage from another site on the body across the perforation. However, given problems such as possible infections at the graft donor site and the inability to see through the graft to assess infection within the middle ear, there is a need to develop an alternative material that is strong, readily available and transparent. Such a material would allow for less invasive surgery and potentially result in a superior hearing outcome for the patient. Our recent work has identified silk fibroin films as a promising material for this application. This paper reviews the repair of large perforations and compares the mechanical properties of silk with some existing graft materials. It also briefly discusses the difficulties in defining and comparing these properties with such different materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Co-woven-knitted (CWK) fabrics have been reported previously. Historically these unique structures have been used to develop composite and shielding fabrics. In this study, novel CWK structures with unique appearances was developed with a modified machine using wool and polyester yarns. The physical properties of these fabrics were compared with conventional woven and knitted fabrics. The thickness of the CWK fabrics was similar to knits. The fabrics showed a unique tensile strength, with higher bending rigidity, and performed better in abrasion resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colour removal and the flux behaviour of nanofiltration (NF-DOW FILMTEC-NF245) and forward osmosis (FO-a flat sheet cellulose triacetate membrane with a woven embedded backing support) membranes were investigated in this study. The NF membrane was employed to perform dye removal experiments with aqueous solutions containing 15 g/L of NaCl and different concentrations of Acid Green 25, Remazol Brilliant Orange FR and Remazol Blue BR dyes. The increase in dye concentration resulted in a decline in water permeability and an increase in colour removal. When the concentrations of dye solutions varied from 250 to 1000 mg/L, at 0.8 bar of trans-membrane pressure, the NF system exhibited a steady permeate flux of more 30 L/m2h and a colour removal of more than 99%; salt rejection was more than 20.0%. Furthermore, the FO system possessed high dye rejection efficiency (almost 100%), with low permeate flux of around 2.0 L/m2h, when using dye solutions as feed streams and seawater as draw stream. The mode of operation (either FO or pressure retarded osmosis (PRO) did not change the flux significantly but PRO mode always produced higher fluxes than FO mode under the operating conditions used in this study. While both NF and FO can be used to reduce the volume of effluent containing dyes from textile industries, the energy spent in NF on applied pressure can be substituted by the osmotic pressure of draw solution in FO when concentrated draw solutions such as sea water or reverse osmosis concentrate are readily available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalase, an oxidoreductase enzyme, works as a detoxification system inside living cells against reactive oxygen species formed as a by-product of different metabolic reactions. The enzyme is found in a wide range of aerobic and anaerobic organisms. Catalase has also been employed in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to its other applications in textile, paper, food and pharmaceutical industries. New applications for catalases are constantly emerging thanks to their high turnover rate, distinct evolutionary origin, relatively simple and well-defined reaction mechanisms. The following review provides comprehensive information on isolation, production and purification of catalases with different techniques from various microbial sources along with their types, structure, mechanism of action and applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The handle properties of single jersey fabrics composed of superfine wools (17 μm) of different fibre curvature (114 vs. 74 °/mm) in blends with cashmere (fibre curvature 49 °/mm) were investigated. There were four blend ratios of cashmere (0, 25, 50, 75%) plus 100% cashmere. Each of the nine fibre blend combinations were replicated three times, and each was knitted into three tightness factors. The 81 fabrics were evaluated using the Wool HandleMeter, which measures seven primary handle attributes and Overall handle, and have been calibrated using a panel of experts and a wide variety of commercial fabrics. Results were analysed by ANOVA and general linear modelling. Tightness factor significantly affected all Wool HandleMeter attribute values, with the effect of tightness factor varying according to handle attribute. The Wool HandleMeter was able to detect differences between fabrics composed of superfine wool differing in fibre curvature, with lower fibre curvature wool fabrics having more preferred Overall handle and softer, looser, cooler, lighter and less dry handle attributes at some or all tightness factors compared with fabrics composed of higher fibre curvature superfine wool. Progressively blending cashmere with wool significantly improved Overall handle, increased soft and smooth handle, reduced dry, heavy and tight handle. Linear regression modelling indicated that fabric mass per unit area explained more than 50% of the variance in overall fabric handle and in combination with variations in fabric thickness and yarn elongation could explain 71% of the variance in Overall handle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of coloured effluent treatment is a major issue for the textile industry. In this study, catalyst P25-graphene was prepared and applied for degrading dye from an aqueous solution. Three types of dyes were selected to determine the feasibility of the catalyst for the dye degradation, including sulphonic, azoic, and fluorescent dyes. P25-graphene catalyst showed good ability to degrade all selected dyes. The influence of inorganic salts and surfactants on the photocatalytic degradation of rhodamine B using catalyst P25-graphene was also investigated. The degradation of rhodamine B was suppressed by the presence of NaCl, but the effect of Na2SO4 was negligible. The degradation of rhodamine B was significantly suppressed by all three types of surfactant, namely anionic, cationic and non-ionic surfactants. NMR technique was used to investigate the mechanisms associated with this suppression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation protection is becoming increasingly necessary for human health, and textiles play an important role. The interaction between UV light and textiles is a complex one, involving fibre, yarn and fabric parameters. In this study, an optical model is presented for examining the influences of fibre parameters on the UV protection offered by a bundle of fibres with a given mass. The effects of mean fibre diameter and fibre type on UV absorption were examined. The model was verified with results of UV–visible diffuse reflectance measurements on natural and synthetic fibres. When the mass of fibres was kept constant, within the measurement range in this study, a bundle of fibres with coarser fibres had a lower UV reflectance than that with finer ones. The model accurately predicted factors influencing UV protection, including fibre diameter, fibre transmittance, porosity and refractive index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely.