183 resultados para magnesium battery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of processing history and morphology is of particular importance for lithium-ion electrolytes for achieving higher ionic conductivities. In this study, single ion conducting poly (4-lithium styrene sulfonic acid) was synthesized by neutralization reaction from polystyrene sulfonic acid, and the effect of morphology and processing method was studied by comparing pelletized, electrospun and gel samples. The PSSLi gels displayed best ionic conductivity, while the pelletized samples showed the worst ionic conductivity. Although electrospinning led to a free standing electrolyte, the lower amount of solvent phase led to lower ionic conductivity when compared to the PSSLi gel. The ionic conductivity at room temperature improved from 6.6 × 10−5 S/cm to 1.4 × 10−3 S/cm by optimizing the processing methodology and the lithium ion concentration. The results show that PSSLi based single ion conducting lithium (SICL) gels are a promising candidate for lithium ion battery application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order for sodium batteries to become a safe, lower cost option for large scale energy storage, minimising the price of all components is important. We report here on the application of a pyrrolidinium room temperature ionic liquid comprising the dicyanamide anion as a successful electrolyte system for sodium metal batteries that does not contain expensive fluorinated species. The effects of plating/stripping of sodium from Na metal electrodes has been investigated in a symmetrical Na | electrolyte | Na configuration at a current density of 10 μA cm− 2. Comparisons are drawn to reference organic electrolytes comprising propylene carbonate-fluoroethylene carbonate. Residual water molecules in the ionic liquid electrolyte are observed to have a significant effect upon the surface film and subsequent favourable plating/stripping behaviour of symmetrical cells and this is explored in detail. An increase of the moisture content from 90 ppm to 400 ppm impedes both electrodeposition and electrodissolution of the Na+/Na. This is investigated at Ni electrodes using cyclic voltammetry at different Na+-salt concentrations to further understand the mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An off-grid photovoltaic power system requires an energy storage system, especially batteries, for mitigation of variability and intermittency problems, and for assured service reliability and availability. The longevity and reliability of such batteries depend on the effectiveness of the charging system. This paper presents the modelling, simulation and hardware implementation of a four-stage switch-mode charger based on the single-ended primary inductance converter. The digital signal processor based controller implements algorithms for the system's power balance control, maximum power point tracking to improve charging speed and efficiency, four-stage optimal charging, and system's protection. The protection algorithm provides over-charge, overdischarge, over-temperature and short circuit protection capabilities. The proposed system has the following advantages: ability to continuously charge the batteries even at reduced solar irradiation, higher efficiency, and use of adaptive thermally compensated set points for optimum performance. A prototype is built and experimental results are presented to validate the simulation results.