326 resultados para Skeletal-muscle Mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The aetiology of the development of type 2 diabetes remains unresolved. In the present study, we assessed whether an impairment of insulin-mediated microvascular perfusion occurs early in the onset of insulin resistance. Materials and methods: Hooded Wistar rats were fed either a normal diet (ND) or a high-fat diet (HFD) for 4 weeks. Anaesthetized animals were subjected to an isoglycaemic hyperinsulinaemic clamp (3 or 10 mU/min/kg × 2 h), and measurements were made of glucose infusion rate (GIR), hindleg glucose uptake, muscle glucose uptake by 2-deoxy-d-glucose (R′g), glucose appearance (Ra), glucose disappearance (Rd), femoral blood flow (FBF) and hindleg 1-methylxanthine disappearance (1-MXD, an index of microvascular perfusion). Results: Compared with ND-fed animal, HFD feeding led to a mild increase in fasting plasma glucose and plasma insulin, without an increase in total body weight. During the clamps, HFD rats showed an impairment of insulin-mediated action on GIR, hindleg glucose uptake, R′g, Ra, Rd and FBF, with a greater loss of insulin responsiveness at 3 mU/min/kg than at 10 mU/min/kg. The HFD also impaired insulin-mediated microvascular perfusion as assessed by 1-MXD. Interestingly, 1-MXD was the only measurement that remained unresponsive to the higher dose of 10 mU/min/kg insulin. Conclusions: We conclude that the early stage of insulin resistance is characterized by an impairment of the insulin-mediated microvascular responses in skeletal muscle. This is likely to cause greater whole body insulin resistance by limiting the delivery of hormones and nutrients to muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) is an important vasodilator and regulator in the cardiovascular system, and this link was the subject of a Nobel prize in 1998. However, NO also plays many other regulatory roles, including thrombosis, immune function, neural activity, and gastrointestinal function. Low concentrations of NO are thought to have important signaling effects. In contrast, high concentrations of NO can interact with reactive oxygen species, causing damage to cells and cellular components.

A less-recognized site of NO production is within skeletal muscle, where small increases are thought to have beneficial effects such as regulating glucose uptake and possibly blood flow, but higher levels of production are thought to lead to deleterious effects such as an association with insulin resistance.

This review will discuss the role of NO in skeletal muscle during and following exercise, including in mitochondrial biogenesis, muscle efficiency, and blood flow with a particular focus on its potential role in regulating skeletal muscle glucose uptake during exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of microRNAs (miRNAs) has established new mechanisms that control skeletal muscle adaptation to exercise. The present study investigated the mRNA regulation of components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin-5), muscle enriched miRNAs, (miR-1, -133a, -133b and -206), and several miRNAs dysregulated in muscle myopathies (miR-9, -23, -29, -31 and -181). Measurements were made in muscle biopsies from nine healthy untrained males at rest, 3 h following an acute bout of moderate-intensity endurance cycling and following 10 days of endurance training. Bioinformatics analysis was used to predict potential miRNA targets. In the 3 h period following the acute exercise bout, Drosha, Dicer and Exportin-5, as well as miR-1, -133a, -133-b and -181a were all increased. In contrast miR-9, -23a, -23b and -31 were decreased. Short-term training increased miR-1 and -29b, while miR-31 remained decreased. Negative correlations were observed between miR-9 and HDAC4 protein (r=-0.71; P= 0.04), miR-31 and HDAC4 protein (r =-0.87; P= 0.026) and miR-31 and NRF1 protein (r =-0.77; P= 0.01) 3 h following exercise. miR-31 binding to the HDAC4 and NRF1 3′ untranslated region (UTR) reduced luciferase reporter activity. Exercise rapidly and transiently regulates several miRNA species in muscle. Several of these miRNAs may be involved in the regulation of skeletal muscle regeneration, gene transcription and mitochondrial biogenesis. Identifying endurance exercise-mediated stress signals regulating skeletal muscle miRNAs, as well as validating their targets and regulatory pathways post exercise, will advance our understanding of their potential role/s in human health

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training.

Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training.

These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to examine the impact of the xanthine oxidase (XO) inhibitor allopurinol on the skeletal muscle activation of cell signaling kinases' and adaptations to mitochondrial proteins and antioxidant enzymes following acute endurance exercise and endurance training. Male Sprague-Dawley rats performed either acute exercise (60 min of treadmill running, 27 m/min, 5% incline) or 6 wk of endurance training (5 days/wk) while receiving allopurinol or vehicle. Allopurinol treatment reduced XO activity to 5% of the basal levels (P < 0.05), with skeletal muscle uric acid levels being almost undetectable. Following acute exercise, skeletal muscle oxidized glutathione (GSSG) significantly increased in allopurinol- and vehicle-treated groups despite XO activity and uric acid levels being unaltered by acute exercise (P < 0.05). This suggests that the source of ROS was not from XO. Surprisingly, muscle GSSG levels were significantly increased following allopurinol treatment. Following acute exercise, allopurinol treatment prevented the increase in p38 MAPK and ERK phosphorylation and attenuated the increase in mitochondrial transcription factor A (mtTFA) mRNA (P < 0.05) but had no effect on the increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor-2, GLUT4, or superoxide dismutase mRNA. Allopurinol also had no impact on the endurance training-induced increases in PGC-1α, mtTFA, and mitochondrial proteins including cytochrome c, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase. In conclusion, although allopurinol inhibits cell signaling pathways in response to acute exercise, the inhibitory effects of allopurinol appear unrelated to exercise-induced ROS production by XO. Allopurinol also has little effect on increases in mitochondrial proteins following endurance training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms facilitating increased skeletal muscle fat oxidation following prolonged, strenuous exercise remain poorly defined. The aim of this study was to examine the influence of plasma free fatty acid (FFA) availability on intramuscular malonyl-CoA concentration and the regulation of whole-body fat metabolism during a 6-h postexercise recovery period. Eight endurance-trained men performed three trials, consisting of 1.5 h high-intensity and exhaustive exercise, followed by infusion of saline, saline + nicotinic acid (NA; low FFA), or Intralipid and heparin [high FFA (HFA)]. Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Ingestion of NA suppressed the postexercise plasma FFA concentration throughout recovery (P < 0.01), except at 4 h. The alteration of the availability of plasma FFA during recovery induced a significant increase in whole-body fat oxidation during the 6-h period for HFA (52.2 ± 4.8 g) relative to NA (38.4 ± 3.1 g; P < 0.05); however, this response was unrelated to changes in skeletal muscle malonyl-CoA and acetyl-CoA carboxylase (ACC)β phosphorylation, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity may have a role in regulating fat metabolism in human skeletal muscle during postexercise recovery. Despite marked changes in plasma FFA availability, no significant changes in intramuscular triglyceride concentrations were detected. These data suggest that the regulation of postexercise skeletal muscle fat oxidation in humans involves factors other than the 5′AMP-activated protein kinase-ACCβ-malonyl-CoA signaling pathway, although malonyl-CoA-mediated regulation cannot be excluded completely in the acute recovery period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STARS is a muscle specific protein that is upregulated in response to endurance exercise and may potentially increase skeletal muscle cell sensitivity to muscle contraction. STARS enhances the activation of intracellular signalling pathways involved in skeletal muscle growth, regeneration and oxidative metabolism.