187 resultados para Oil shales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was conducted with barramundi (Lates calcarifer) juveniles to examine the marginal efficiency of utilisation of long chain-polyunsaturated fatty acids (LC-PUFA). A series of five diets with blends of fish (anchovy) oil and poultry fat (F100:P0, F60:P40, F30:P70, F15:P85, F0:P100) were fed to 208. ±. 4.1. g fish over a 12-week period. The replacement of fish oil with poultry fat had no impact on growth performance (average final weight of 548.3. ±. 10.2. g) or feed conversion (mean = 1.14. ±. 0.02). Analysis of the whole body composition showed that the fatty acid profile reflected that of the fed diet. However it was also shown that there was a disproportional retention of some fatty acids relative to others (notably LOA, 18:2n-6 and LNA, 18:3n-3). By examining the body mass independent retention of different fatty acids with differential levels of intake of each, the marginal efficiencies of the use of these nutrients by this species were able to be determined. The differential retention of fatty acids in the meat was also examined allowing the determination of oil blending strategies to optimise meat n-3 LC-PUFA levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine microalgae present a renewable alternative source for sustainable production of omega-3 fatty acids, as compared to conventional sources such as krill oil and fish oil. In this study, we optimised a method for lipid extraction from marine thraustochytrids using a bead mill and enzymatic concentration of omega-3 fatty acids from the thraustochytrid oil. The optimised lipid extraction conditions were, bead size 0.4-0.6μm, 4500rpm, 4min of processing time at 5g biomass concentration. The maximum lipid yield (% dry weight basis) achieved at optimum conditions were 40.5% for Schizochytrium sp. S31 (ATCC) and 49.4% for Schizochytrium sp. DT3 (in-house isolate). DT3 oil contained 39.8% docosahexaenoic acid (DHA) as a percentage of lipid, a higher DHA percentage than S31. Partial hydrolysis of DT3 oil using Candida rugosa lipase was performed to enrich omega-3 polyunsaturated fatty acids (PUFAs) in the glyceride portion. Total omega-3 fatty acid content was increased to 88.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here a novel anti-biodegradable hydrophobic acrylamide copolymer that was prepared from acrylamide, acrylic acid, sodium 3-(allyloxy)-2-hydroxypropane-1-sulfonate and N-allyl-2-(2,4-dichlorophenoxy) acetamide using the 2,2'-azobis(2-methylpropionamide) dihydrochloride initiation system. Subsequently, the copolymer was characterized by FT-IR, 1H NMR, TG-DTG and water-solubility. And the biodegradability test indicated that the copolymer was not deemed to be readily biodegradable via a closed bottle test established by the Organization for Economic Co-operation and Development (OECD 301 D). Meanwhile the copolymer could significantly enhance the viscosity of the aqueous solution in comparison with partially hydrolyzed polyacrylamide. A viscosity retention of 51.9% indicated the result of a dramatic improvement of temperature tolerance. And then the excellent salt resistance, shear resistance, viscoelasticity, long-term stability of the copolymer could be obtained, which provides a good theoretical foundation for the application in enhanced oil recovery. In addition, this copolymer exerted stronger mobility control ability with a resistance factor of 22.1 and a residual resistance factor of 5.0, and superior ability for enhanced oil recovery of 12.9%. Hence, the copolymer has potential application for enhanced oil recovery in high-temperature and high-salinity reservoirs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA), 3-(diallyl-amino)-2-hydroxypropyl sulfonate (NDS), acrylamide (AM) and acrylic acid (AA) were successfully utilized to prepare novel acrylamide-based copolymers (named AM/AA/NIMA and AM/AA/NDS/NIMA) which were functionalized by a combination of imidazoline derivative and/or sulfonate via redox free-radical polymerization. The two copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), viscosimetry, pyrene fluorescence probe, thermogravimetry (TG) and differential thermogravimetry (DTG). As expected, the polymers exhibited excellent thickening property, shear stability (viscosity retention rate 5.02% and 7.65% at 1000 s-1) and salt-tolerance (10:000 mg L-1 NaCl: viscosity retention rate up to 17.1% and 10.2%) in comparison with similar concentration partially hydrolyzed polyacrylamide (HPAM). The temperature resistance of the AM/AA/NDS/NIMA solution was also remarkably improved and the viscosity retention rate reached 54.8% under 110 °C. According to the core flooding tests, oil recovery could be enhanced by up to 15.46% by 2000 mg L-1 of the AM/AA/NDS/NIMA brine solution at 80 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel imidazoline-based sulfonate copolymers (noted PAMDSCM and PAMPSCM) were successfully prepared by copolymerization of acrylamide (AM), acrylic acid (AA), 1-acrylamido ethyl-2-oleic imidazoline (ACEIM) with the sodium salts of 3-(diallyl-amino)-2-hydroxypropyl (NDS) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS), respectively. The copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR) spectroscopy, pyrene fluorescence probe spectroscopy, viscosimetry and thermogravimetry (TG). Both PAMDSCM and PAMPSCM copolymers had excellent high-temperature tolerance in comparison with the same concentration of HPAM, and the residual viscosities were 32.0 mPa s and 31.3 mPa s (viscosity retention rates were 38.8% and 37.1%) at 140 °C, respectively. The copolymers possessed superior long-term thermal stability and their residual viscosity rates were up to 81.8% and 63.8% (52.9 mPa s and 47.1 mPa s) lasting 1.5 hours at 100 °C and 170 s-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effects of oil price shocks on three measures of oil exporters' and oil importers' external balances: total trade balance, oil trade balance and non-oil trade balance. We employ three second-generation heterogeneous linear panel models and one recently developed non-linear panel estimation technique that allows for cross-sectional dependence. With respect to 28 major oil exporting countries, an increase in oil prices leads to an improved real oil trade balance, although it is detrimental to non-oil and total trade balances. This finding might be due to the expenditure effect arising from increases in proceeds from oil exports. A decrease in oil prices is found to be beneficial for both total and oil trade balances in these oil exporting countries. Forty major oil importers seem to be increasingly shielded from positive oil shocks over the 1970s and 1980s; however, they must worry about oil price declines. A decline in oil prices has a negative impact on both total and real oil trade balances resulting from increased oil imports in emerging economies. Hence, a decline in oil prices is beneficial to oil exporters due to the quantity effect outweighing the price effect, while for oil importers a stable oil price is more desirable than a price decline. These results are important to take into account if we are to gain a full understanding on the magnitude of the trade and macroeconomic effects of oil price changes and what the policy responses should be.