193 resultados para Materials Science, Multidisciplinary


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun fibers are widely used in composite material design and fabrication due to their high aspect ratio, high surface area and favorable mechanical properties. In this report, novel organic ionic plastic crystal (OIPC) modified poly(vinylidene difluoride) (PVDF) composite fiber membranes were prepared by electrospinning. These composite materials are of interest for application as solid electrolytes in devices including lithium and sodium batteries. The influence of the OIPC, N-ethyl-N-methylpyrrolidinium tetrafluoroborate [C2mpyr][BF4], on the morphology and phase behavior of the composite fibers was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. Compared with pure electrospun PVDF fibers, which have an electroactive β phase and a small amount of non-polar α phase, the ion-dipole interaction between OIPC and the polymer in the co-electrospun composite system can reduce the non-polar α phase PVDF, resulting in almost entirely electroactive β phase PVDF. Differential scanning calorimetry shows that the ion-dipole interaction between the OIPC and PVDF can also interrupt the crystalline structure of the OIPC. Solid state NMR analysis also reveals different molecular dynamics of the [C2mpyr][BF4] in co-electrospun fibers compared with pure OIPC. Thus, electrospun [C2mpyr][BF4]/PVDF composite fibers that combine both increased ionic conductivity and almost pure β phase PVDF are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state ion conductors based on organic ionic plastic crystals (OIPCs) are a promising alternative to conventional liquid electrolytes in lithium battery applications. The OIPC-based electrolytes are safe (nonflammable) and flexible in terms of design and operating conditions. Magnetic resonance imaging (MRI) is a powerful noninvasive method enabling visualization of various chemical phenomena. Here, we report a first quantitative in situ MRI study of operating solid-state lithium cells. Lithium ion transfer into the OIPC matrix during the ongoing discharge of the anode results in partial liquefaction of the electrolyte at the metal interface. The developed liquid component enhances the ion transport across the interface and overall battery performance. Displacement of the liquefaction front is accompanied by a faster Li transfer through the grain boundaries and depletion at the cathode. The demonstrated solid-liquid hybrid properties, inherent in many OIPCs, combine benefits of highly conductive ionic liquids with safety and flexibility of solids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen permeation of nanostructured bainitic steel, produced at two different transformation temperatures, i.e., 473.15 K (200 °C) BS-200 and 623.15 K (350 °C) BS-350, was determined using Devanathan–Stachurski hydrogen permeation cell and compared with that of mild steel. Nanostructured bainitic steel showed lower effective diffusivity of hydrogen as compared to the mild steel. The BS-200 steel, which exhibited higher volume fraction of bainitic ferrite phase, showed lower effective diffusivity than BS-350 steel. The finer microstructural constituents (bainitic ferrite laths and retained austenite films) and higher dislocation density in the bainitic ferrite phase of BS-200 steel can be attributed to its lower effective diffusivity as compared to BS-350 steel and mild steel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study a largely available lignocellulose feedstock hemp (Cannabis sativa), obtained as an industrial waste, was used for cellulose extraction. The extraction of cellulose microfibres from hemp biomass was conducted by alkaline treatment and an acidification process. The extracted cellulose microfibres were characterised using Fourier-transformed infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD).The viability of the study was determined by growing human fibroblasts on the preparation which resulted in being non-toxic; indicating its potential in preparing biological scaffolds. Upon enzymatic hydrolysis of the cellulose microfibre using cellulase from Trichoderma reesei, a maximum of 909 mg/g of reducing sugars were obtained, which endorses its suitability for biofuel production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the two-body abrasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size of reinforced particles notably affects the electro-discharge machining (EDM) of metal matrix composites (MMCs). This paper explores the mechanism of wire EDM of MMCs with different sizes of reinforced particles as well as the corresponding unreinforced matrix material. The mechanisms of material removal, surface generation, and taper kerf formation were investigated. This study shows that the particles’ ability to protect matrix materials from the intense heat of electric arc controls the material removal rate, surface generation, and taper of kerf. The low melting point matrix material is removed very easily, but the heat resistance reinforced particles delay the removal of material and facilitate the transfer of the workpiece material to wire electrode and vice versa. Thus, the material stays longer in touch with intense heat and affects the surface generation, wire electrode wear, and width of the kerf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptides have demonstrated unique capabilities to fabricate inorganic nanomaterials of numerous compositions through noncovalent binding of the growing surface in solution. In this contribution, we demonstrate that these biomolecules can control all facets of Au nanoparticle fabrication, including Au3+ reduction, without the use of secondary reagents. In this regard using the AuBP1 peptide, the N-terminal tryptophan residue is responsible for driving Au3+ reduction to generate Au nanoparticles passivated by the oxidized peptide in solution, where localized residue context effects control the reducing strength of the biomolecule. The process was fully monitored by both time-resolved monitoring of the growth of the localized surface plasmon resonance and transmission electron microscopy. Nanoparticle growth occurs by a unique disaggregation of nanoparticle aggregates in solution. Computational modeling demonstrated that the oxidized residue of the peptide sequence does not impact the biomolecule's ability to bind the inorganic surface, as compared to the parent peptide, confirming that the biomolecule can be exploited for all steps in the nanoparticle fabrication process. Overall, these results expand the utility of peptides for the fabrication of inorganic nanomaterials, more strongly mimicking their use in nature via biomineralization processes. Furthermore, these capabilities enhance the simplicity of nanoparticle production and could find rapid use in the generation of complex multicomponent materials or nanoparticle assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles ismeasured using a free space transmission measurement technique over the frequency range of1–18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorptionfor a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over thefull frequency range. The levels of absorption are shown to be higher than reflection in the testedsamples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopantconcentration and polymerisation time affect the total shielding effectiveness and microwave agingbehaviour. Distinguishing either of these two factors as being exclusively the dominant mechanismof shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycrasamples with a p-toluene sulfonic acid (pTSA) concentration of 0.015 M and polymerisation times of60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon agingfor 72 weeks at room temperature (20 C, 65% Relative humidity (RH)). The concentration of thedopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with ahigher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwaveproperties exhibit better stability with high dopant concentration and/or longer polymerization times.High pTSA dopant concentrations and/or longer polymerisation times result in high microwaveinsertion loss and are more effective in reducing the transmission and also increasing the longevity ofthe electrical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular simulation can provide valuable guidance in establishing clear links between structure and function to enable the design of new polymer-based materials. However, molecular simulation of thermoset polymers in particular, such as epoxies, present specific challenges, chiefly in the credible preparation of polymerised samples. Despite this need, a comprehensive, reproducible and robust process for accomplishing this using molecular simulation is still lacking. Here, we introduce a clear and reproducible cross-linking protocol to reliably generate three dimensional epoxy cross-linked polymer structures for use in molecular simulations. This protocol is sufficiently detailed to allow complete reproduction of our results, and is applicable to any general thermoset polymer. Amongst our developments, key features include a reproducible procedure for calculation of partial atomic charges, a reliable process for generating and validating an equilibrated liquid precursor mixture, and establishment of a novel, robust and reproducible protocol for generating the three-dimensional cross-linked solid polymer. We use these structures as input to subsequent molecular dynamics simulations to calculate a range thermo-mechanical properties, which compare favourably with experimental data. Our general protocol provides a benchmark for the process of simulating epoxy polymers, and can be readily translated to prepare and model epoxy samples that are dynamically cross-linked in the presence of surfaces and nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-atom molecular dynamics simulations and experimental characterization have been used to examine the structure and dynamics of novel evaporation-suppressing films where the addition of a water-soluble polymer to an ethylene glycol monooctadecyl ether monolayer leads to improved water evaporation resistance. Simulations and Langmuir trough experiments demonstrate the surface activity of poly(vinyl pyrrolidone) (PVP). Subsequent MD simulations performed on the thin films supported by the PVP sublayer show that, at low surface pressures, the polymer tends to concentrate at the film/water interface. The simulated atomic concentration profiles, hydrogen bonding patterns, and mobility analyses of the water-polymer-monolayer interfaces reveal that the presence of PVP increases the atomic density near the monolayer film, improves the film stability, and reduces the mobility of interfacial waters. These observations explain the molecular basis of the improved efficacy of these monolayer/polymer systems for evaporation protection of water and can be used to guide future development of organic thin films for other applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The machining process is the most common method for metal cutting, especially in the fabrication of biomaterials and artificial implants. In modern industry, the goal of production is to manufacture products at a low cost, with the highest quality in the shortest time. The main focus of the research presented here is to provide a review of the machinability of metallic and ceramic biomaterials in traditional machining processes, such as turning, milling and grinding. Thereafter, machining strategies, machinability and surface characteristics post machining are discussed. To provide a better understanding of the machining process, various cutting tools and fluids are analysed. Finally, the current research gap and directions of prospect investigations are highlighted.