203 resultados para Lithium salt


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of diluents to ionic liquids (ILs) has recently been shown to enhance the transport properties of ILs. In the context of electrolyte design, this enhancement allows the realisation of IL-based electrolytes for metal-air batteries and other storage devices. It is likely that diluent addition not only impacts the viscosity of the IL, but also the ion-ion interactions and structure. Here, we investigate the nano-structured 1-methyl-3-octylimidazolium chloride (OMImCl) with varying water concentrations in the presence of two metal salts, zinc chloride and magnesium chloride. We find that the choice of metal salt has a significant impact on the structure and transport properties of the system; this is explained by the water structuring and destructing properties of the metal salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Dietary sodium and potassium are involved in the pathogenesis of cardiovascular disease. Data exploring the cardiovascular outcomes associated with these electrolytes within Australian children is sparse. Furthermore, an objective measure of sodium and potassium intake within this group is lacking. OBJECTIVE: The primary aim of the Salt and Other Nutrient Intakes in Children ("SONIC") study was to measure sodium and potassium intakes in a sample of primary schoolchildren located in Victoria, Australia, using 24-hour urine collections. Secondary aims were to identify the dietary sources of sodium and potassium, examine the association between these electrolytes and cardiovascular risk factors, and assess children's taste preferences and saltiness perception of manufactured foods. METHODS: A cross-sectional study was conducted in a convenience sample of schoolchildren attending primary schools in Victoria, Australia. Participants completed one 24-hour urine collection, which was analyzed for sodium, potassium, and creatinine. Completeness of collections was assessed using collection time, total volume, and urinary creatinine. One 24-hour dietary recall was completed to assess dietary intake. Other data collected included blood pressure, body weight, height, waist and hip circumference. Children were also presented with high and low sodium variants of food products and asked to discriminate salt level and choose their preferred variant. Parents provided demographic information and information on use of discretionary salt. Descriptive statistics will be used to describe sodium and potassium intakes. Linear and logistic regression models with clustered robust standard errors will be used to assess the association between electrolyte intake and health outcomes (blood pressure and body mass index/BMI z-score and waist circumference) and to assess differences in taste preference and discrimination between high and low sodium foods, and correlations between preference, sodium intake, and covariates. RESULTS: A total of 780 children across 43 schools participated. The results from this study are expected at the end of 2015. CONCLUSIONS: This study will provide the first objective measure of sodium and potassium intake in Australian schoolchildren and improve our understanding of the relationship of these electrolytes to cardiovascular risk factors. Furthermore, this study will provide insight into child taste preferences and explore related factors. Given the cardiovascular implications of consuming too much sodium and too little potassium, monitoring of these nutrients during childhood is an important public health initiative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of organic ionic plastic crystals (OIPCs) as a new class of solid electrolyte for energy storage devices such as lithium batteries and, more recently, sodium batteries is attracting increasing attention. Key to this is achieving sufficient target ion transport through the material. This requires fundamental understanding of the structure and dynamics of OIPCs that have been doped with the necessary lithium or sodium salts. Here we report, for the first time, the atomic level structure and transport of both lithium and sodium ions in the plastic crystalline phases of an OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. These molecular dynamics simulations reveal two types of coordination geometries of the alkali metal ion first solvation shells, which cooperate closely with the metal ion hopping motion. The significantly different ion migration rates between two metal ion doped systems could also be related to the differences in solvation structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knots Calidris canutus and sanderlings C. alba were used in cage experiments in which water and food consumption were measured under different salt regimes. Food consumption decreased and water consumption increased after changing the water provided from fresh to salt. Knots have the capability of adapting to salt water. Swallowing of adherent water with the prey, as well as evaporative cooling in heat stressed birds, might increase salt stress. -from Authors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: As part of its endorsement of the World Health Organization's Global Action Plan to prevent non-communicable diseases, the Federal Government of Australia has committed to a 30% reduction in average population salt intake by 2025. Currently, mean daily salt intake levels are 8-9 g, varying by sex, region and population group. A number of salt reduction initiatives have been established over the last decade, but key elements for a co-ordinated population-level strategy are still missing. The objective of this review is to provide a comprehensive overview of existing population-level salt reduction activities in Australia and identify opportunities for further action.

METHODS: A review of the published literature and stakeholder activities was undertaken to identify and document current activities. The activities were then assessed against a pre-defined framework for salt reduction strategies.

RESULTS: A range of initiatives were identified from the review. The Australian Division of World Action on Salt and Health (AWASH) was established in 2005 and in 2007 launched its Drop the Salt! Campaign. This united non-governmental organisations (NGOs), health and medical and food industry organisations in a co-ordinated advocacy effort to encourage government to develop a national strategy to reduce salt. Subsequently, in 2010 the Federal Government launched its Food and Health Dialogue (FHD) with a remit to improve the health of the food supply in Australia through voluntary partnerships with food industry, government and non-government public health organisations. The focus of the FHD to date has been on voluntary reformulation of foods, primarily through salt reduction targets. More recently, in December 2014, the government's Health Star Rating system was launched. This front of pack labelling scheme uses stars to highlight the nutritional profile of packaged foods. Both government initiatives have clear targets or criteria for industry to meet, however, both are voluntary and the extent of industry uptake is not yet clear. There is also no parallel public awareness campaign to try and influence consumer behaviour relating to salt and no agreed mechanism for monitoring national changes in salt intake. The Victorian Health Promotion Foundation (VicHealth) has recently instigated a State-level partnership to advance action and will launch its strategy in 2015.

CONCLUSIONS: In conclusion, salt reduction activities are currently being implemented through a variety of different programs but additional efforts and more robust national monitoring mechanisms are required to ensure that Australia is on track to achieve the proposed 30% reduction in salt intake within the next decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased recognition of the global importance of salt marshes as 'blue carbon' (C) sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2) if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora) sediment C levels following seagrass (Thallasiatestudinum) wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA), we recorded 296 patches (7.5 ± 2.3 m(2) mean area ± SE) of vegetation loss (aged 3-12 months) in a salt marsh meadow the size of a soccer field (7 275 m(2)). Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth) were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh) biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiFe1 − xSmxPO4/C cathode materials were synthesized though a facile hydrothermal method. Compared with high-temperature solid-phase sintering, the method can allow for the fabrication of low Sm content (2 %), a scarce and expensive rare earth element, while the presence of an optimized carbon coating with large amount of sp2-type carbon sharply increases the material’s electrochemical performance. The high-rate dischargeability at 5 C, as well as the exchange current density, can be increased by 21 and 86 %, respectively, which were attributed to the fine size and the large cell parameter a/c as much. It should be pointed out that the a/c value will be increased for the LiFePO4 Sm-doped papered by both of the two methods, while the mechanism is different: The value c is increased for the front and the value a is decreased for the latter, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Most populations are consuming too much salt which is the main contributor of high blood pressure, a leading risk factor of cardiovascular disease and stroke. The South Pacific Office of the World Health Organization has been facilitating the development of salt reduction strategies in Pacific Island Countries and areas (PICs). The objective of this analysis was to review progress to date and identify regional actions needed to support PICs and ensure they achieve the global target to reduce population salt intake by 30% by 2025.
METHODS: Relevant available national food, health and non-communicable disease (NCD) plans from all 22 PICs were reviewed. NCD co-ordinators provided updates and relayed experiences through semi-structured interviews. All activities were systematically categorised according to an existing salt reduction framework for the development of salt reduction strategies.
RESULTS: Salt reduction consultations had been held in 14 countries and final strategies or action plans developed in nine of these, with drafts available in a further three. Three other countries had integrated salt reduction into NCD strategic plans. Baseline monitoring of salt intake had been undertaken in three countries, salt levels in foods in nine countries and salt knowledge, attitude and behaviour surveys in four countries. Most countries were at early stages of implementation and identified limited resources as a barrier to action. Planned salt reduction strategies included work with food industry or importers, implementing regional salt reduction targets, reducing salt levels in school and hospital meals, behaviour change campaigns, and monitoring and evaluation.
CONCLUSIONS: There had been good progress on salt reduction planning in PICs. The need for increased capacity to effectively implement agreed activities, supported by regional standards and the establishment of improved monitoring systems, were identified as important steps to ensure the potential cardiovascular health benefits of salt reduction could be fully realised in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two sulfonated ionomers based on poly(triethylmethyl ammonium 2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) and containing mixtures of Li+ and quaternary ammonium cations are characterised. The first system contains Li+ and the methyltriethyl ammonium cation (N1222) in a 1:9 molar ratio, and the 7Li NMR line widths showed that the Li+ ions are mobile in this system below the glass transition temperature (105°C) and are therefore decoupled from the polymer segmental motion. The conductivity in this system was measured as 10-5 Scm-1 at 130°C. A second PAMPS system containing Li+ and the dimethylbutylmethoxyethyl ammonium cation (N114(2O1)) in a 2:8 molar ratio showed much lower conductivities despite a significantly lower Tg (60°C), possibly due to associations between the Li+ and the ether group on the ammonium cation, or between the latter cations and the sulfonate groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine whether an education programme targeted at schoolchildren could lower salt intake in children and their families. Design Cluster randomised controlled trial, with schools randomly assigned to either the intervention or control group. Setting 28 primary schools in urban Changzhi, northern China. Participants 279 children in grade 5 of primary school, with mean age of 10.1; 553 adult family members (mean age 43.8). Intervention Children in the intervention group were educated on the harmful effects of salt and how to reduce salt intake within the schools' usual health education lessons. Children then delivered the salt reduction message to their families. The intervention lasted for one school term (about 3.5 months). Main outcome measures The primary outcome was the difference between the groups in the change in salt intake (as measured by 24 hour urinary sodium excretion) from baseline to the end of the trial. The secondary outcome was the difference between the two groups in the change in blood pressure. Results At baseline, the mean salt intake in children was 7.3 (SE 0.3) g/day in the intervention group and 6.8 (SE 0.3) g/day in the control group. In adult family members the salt intakes were 12.6 (SE 0.4) and 11.3 (SE 0.4) g/day, respectively. During the study there was a reduction in salt intake in the intervention group, whereas in the control group salt intake increased. The mean effect on salt intake for intervention versus control group was -1.9 g/day (95% confidence interval -2.6 to -1.3 g/day; P<0.001) in children and -2.9 g/day (-3.7 to -2.2 g/ day; P<0.001) in adults. The mean effect on systolic blood pressure was -0.8 mm Hg (-3.0 to 1.5 mm Hg; P=0.51) in children and -2.3 mm Hg (-4.5 to -0.04 mm Hg; P<0.05) in adults. Conclusions An education programme delivered to primary school children as part of the usual curriculum is effective in lowering salt intake in children and their families. This offers a novel and important approach to reducing salt intake in a population in which most of the salt in the diet is added by consumers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis was focused on developing alloy based anode materials for Li-ion and Na-ion batteries. It helps to reduce the size and increase the energy density of the batteries. Furthermore, a novel cathode material was developed for Na-ion batteries which showed good cycling performance over a period of 100 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zwitterions with a cyano group on the side chain (CZ) were synthesized. Although the addition of CZ caused a slightly negative effect on viscosity, ionic conductivity, limiting current density, and lithium transference number, the oxidation limit of PEGDME/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) composites was improved to over 5 V. For charge/discharge testing using Li|electrolyte|LiCoO2 cells, the cycle stability of PEGDME/LiTFSA with CZ in the voltage range of 3.0-4.6 V was much higher than that of PEGDME/LiTFSA. Incorporating a small mole fraction of CZ into PEGDME-based electrolytes prevented an increase in the interface resistance between the electrolyte and cathode with increasing numbers of the cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.