180 resultados para artificial neural network (ANN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Levenberg Marquardt (LM) algorithm is one of the most effective algorithms in speeding up the convergence rate of the Artificial Neural Networks (ANN) with Multilayer Perceptron (MLP) architectures. However, the LM algorithm suffers the problem of local minimum entrapment. Therefore, we introduce several improvements to the Levenberg Marquardt algorithm by training the ANNs with meta-heuristic nature inspired algorithm. This paper proposes a hybrid technique Accelerated Particle Swarm Optimization using Levenberg Marquardt (APSO_LM) to achieve faster convergence rate and to avoid local minima problem. These techniques are chosen since they provide faster training for solving pattern recognition problems using the numerical optimization technique.The performances of the proposed algorithm is evaluated using some bench mark of classification’s datasets. The results are compared with Artificial Bee Colony (ABC) Algorithm using Back Propagation Neural Network (BPNN) algorithm and other hybrid variants. Based on the experimental result, the proposed algorithms APSO_LM successfully demonstrated better performance as compared to other existing algorithms in terms of convergence speed and Mean Squared Error (MSE) by introducing the error and accuracy in network convergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A useful patient admission prediction model that helps the emergency department of a hospital admit patients efficiently is of great importance. It not only improves the care quality provided by the emergency department but also reduces waiting time of patients. This paper proposes an automatic prediction method for patient admission based on a fuzzy min–max neural network (FMM) with rules extraction. The FMM neural network forms a set of hyperboxes by learning through data samples, and the learned knowledge is used for prediction. In addition to providing predictions, decision rules are extracted from the FMM hyperboxes to provide an explanation for each prediction. In order to simplify the structure of FMM and the decision rules, an optimization method that simultaneously maximizes prediction accuracy and minimizes the number of FMM hyperboxes is proposed. Specifically, a genetic algorithm is formulated to find the optimal configuration of the decision rules. The experimental results using a large data set consisting of 450740 real patient records reveal that the proposed method achieves comparable or even better prediction accuracy than state-of-the-art classifiers with the additional ability to extract a set of explanatory rules to justify its predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, prediction interval (PI)-based modelling techniques are introduced and applied to capture the nonlinear dynamics of a polystyrene batch reactor system. Traditional NN models are developed using experimental datasets with and without disturbances. Simulation results indicate that traditional NNs cannot properly handle disturbances in reactor data and demonstrate a poor forecasting performance, with an average MAPE of 22% in the presence of disturbances. The lower upper bound estimation (LUBE) method is applied for the construction of PIs to quantify uncertainties associated with forecasts. The simulated annealing optimization technique is employed to adjust NN parameters for minimization of an innovative PI-based cost function. The simulation results reveal that the LUBE method generates quality PIs without requiring prohibitive computations. As both calibration and sharpness of PIs are practically and theoretically satisfactory, the constructed PIs can be used as part of the decision-making and control process of polymerization reactors. © 2014 The Institution of Chemical Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity and level of uncertainty present in operation of power systems have significantly grown due to penetration of renewable resources. These complexities warrant the need for advanced methods for load forecasting and quantifying uncertainties associated with forecasts. The objective of this study is to develop a framework for probabilistic forecasting of electricity load demands. The proposed probabilistic framework allows the analyst to construct PIs (prediction intervals) for uncertainty quantification. A newly introduced method, called LUBE (lower upper bound estimation), is applied and extended to develop PIs using NN (neural network) models. The primary problem for construction of intervals is firstly formulated as a constrained single-objective problem. The sharpness of PIs is treated as the key objective and their calibration is considered as the constraint. PSO (particle swarm optimization) enhanced by the mutation operator is then used to optimally tune NN parameters subject to constraints set on the quality of PIs. Historical load datasets from Singapore, Ottawa (Canada) and Texas (USA) are used to examine performance of the proposed PSO-based LUBE method. According to obtained results, the proposed probabilistic forecasting method generates well-calibrated and informative PIs. Furthermore, comparative results demonstrate that the proposed PI construction method greatly outperforms three widely used benchmark methods. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a Radial Basis Function Network (RBFN) trained with the Dynamic Decay Adjustment (DDA) algorithm (i.e., RBFNDDA) is deployed as an incremental learning model for tackling transfer learning problems. An online learning strategy is exploited to allow the RBFNDDA model to transfer knowledge from one domain and applied to classification tasks in a different yet related domain. An experimental study is carried out to evaluate the effectiveness of the online RBFNDDA model using a benchmark data set obtained from a public domain. The results are analyzed and compared with those from other methods. The outcomes positively reveal the potentials of the online RBFNDDA model in handling transfer learning tasks. © 2014 The authors and IOS Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that rock masses are inhomogeneous, discontinuous media composed of rock material and naturally occurring discontinuities such as joints, fractures and bedding planes. These features make any analysis very difficult using simple theoretical solutions. Generally speaking, back analysis technique can be used to capture some implicit parameters for geotechnical problems. In order to perform back analyses, the procedure of trial and error is generally required. However, it would be time-consuming. This study aims at applying a neural network to do the back analysis for rock slope failures. The neural network tool will be trained by using the solutions of finite element upper and lower bound limit analysis methods. Therefore, the uncertain parameter can be obtained, particularly for rock mass disturbance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced fuzzy min-max (EFMM) network is proposed for pattern classification in this paper. The aim is to overcome a number of limitations of the original fuzzy min-max (FMM) network and improve its classification performance. The key contributions are three heuristic rules to enhance the learning algorithm of FMM. First, a new hyperbox expansion rule to eliminate the overlapping problem during the hyperbox expansion process is suggested. Second, the existing hyperbox overlap test rule is extended to discover other possible overlapping cases. Third, a new hyperbox contraction rule to resolve possible overlapping cases is provided. Efficacy of EFMM is evaluated using benchmark data sets and a real medical diagnosis task. The results are better than those from various FMM-based models, support vector machine-based, Bayesian-based, decision tree-based, fuzzy-based, and neural-based classifiers. The empirical findings show that the newly introduced rules are able to realize EFMM as a useful model for undertaking pattern classification problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research is to examine the efficiency of different aggregation algorithms to the forecasts obtained from individual neural network (NN) models in an ensemble. In this study an ensemble of 100 NN models are constructed with a heterogeneous architecture. The outputs from NN models are combined by three different aggregation algorithms. These aggregation algorithms comprise of a simple average, trimmed mean, and a Bayesian model averaging. These methods are utilized with certain modifications and are employed on the forecasts obtained from all individual NN models. The output of the aggregation algorithms is analyzed and compared with the individual NN models used in NN ensemble and with a Naive approach. Thirty-minutes interval electricity demand data from Australian Energy Market Operator (AEMO) and the New York Independent System Operator's web site (NYISO) are used in the empirical analysis. It is observed that the aggregation algorithm perform better than many of the individual NN models. In comparison with the Naive approach, the aggregation algorithms exhibit somewhat better forecasting performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a hybrid controller based on the combination of fuzzy logic control (FLC) mechanism and internal model-based control (IMC). Neural network-based inverse and forward models are developed for IMC. After designing the FLC and IMC independently, they are combined in parallel to produce a single control signal. Mean averaging mechanism is used to combine the prediction of both controllers. Finally, performance of the proposed hybrid controller is studied for a nonlinear numerical plant model (NNPM). Simulation result shows the proposed hybrid controller outperforms both FLC and IMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction interval (PI) has been extensively used to predict the forecasts for nonlinear systems as PI-based forecast is superior over point-forecast to quantify the uncertainties and disturbances associated with the real processes. In addition, PIs bear more information than point-forecasts, such as forecast accuracy. The aim of this paper is to integrate the concept of informative PIs in the control applications to improve the tracking performance of the nonlinear controllers. In the present work, a PI-based controller (PIC) is proposed to control the nonlinear processes. Neural network (NN) inverse model is used as a controller in the proposed method. Firstly, a PI-based model is developed to construct PIs for every sample or time instance. The PIs are then fed to the NN inverse model along with other effective process inputs and outputs. The PI-based NN inverse model predicts the plant input to get the desired plant output. The performance of the proposed PIC controller is examined for a nonlinear process. Simulation results indicate that the tracking performance of the PIC is highly acceptable and better than the traditional NN inverse model-based controller.