173 resultados para OLIVE RIDLEY TURTLES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The movements of some long-distance migrants are driven by innate compass headings that they follow on their first migrations (e.g., some birds and insects), while the movements of other first-time migrants are learned by following more experienced conspecifics (e.g., baleen whales). However, the overall roles of innate, learned, and social behaviors in driving migration goals in many taxa are poorly understood. To look for evidence of whether migration routes are innate or learned for sea turtles, here for 42 sites around the world we compare the migration routes of >400 satellite-tracked adults of multiple species of sea turtle with ∼45 000 Lagrangian hatchling turtle drift scenarios. In so doing, we show that the migration routes of adult turtles are strongly related to hatchling drift patterns, implying that adult migration goals are learned through their past experiences dispersing with ocean currents. The diverse migration destinations of adults consistently reflected the diversity in sites they would have encountered as drifting hatchlings. Our findings reveal how a simple mechanism, juvenile passive drift, can explain the ontogeny of some of the longest migrations in the animal kingdom and ensure that adults find suitable foraging sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km2) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species' use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long-distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over recent years, a major breakthrough in marine animal tracking has occurred with the advent of Fastloc-GPS that provides highly accurate location data even for animals that only surface briefly such as sea turtles, marine mammals and penguins. We assessed the accuracy of Fastloc-GPS locations using fixed trials of tags in which >45 000 locations were obtained. Procedures for determining the speed of travel and heading were developed by simulating tracks and then adding Fastloc-GPS location errors. The levels of detail achievable for speed and heading estimates were illustrated by using empirical Fastloc-GPS data for a green turtle (Chelonia mydas, Linnaeus, 1758) travelling over 3000 km across the Indian Ocean. The accuracy of Fastloc-GPS locations varied as a function of the number of GPS satellites used in the location calculation. For example, when Fastloc-GPS locations were calculated using 4 GPS satellites, 50% of locations were within 36 m and 95% within 724 m of the true position. These values improved to 18 and 70 m, respectively, when 6 satellites were used. Simulations indicated that for animals travelling around 2·5 km h-1 (e.g. turtles, penguins and seals) and depending on the number of satellites used in the location calculation, robust speed and heading estimates would usually be obtained for locations only 1-6 h apart. Fastloc-GPS accuracy is several orders of magnitude better that conventional Argos tracking or light-based geolocation and consequently will allow new insights into small-scale movement patterns of marine animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management strategies to protect endangered species primarily focus on safeguarding habitats currently perceived as important (due to high-density use, rarity or contribution to the biological cycle), rather than sites of future ecological importance. This discrepancy is particularly relevant for species inhabiting beaches and coastal areas that may be lost due to sea-level rise over the next 100 years through climate change. Here, we modelled four sea-level rise (SLR) scenarios (0.2, 0.6, 0.9 and 1.3 m) to determine the future vulnerability and viability of nesting habitat (six distinct nesting beaches totalling about 6 km in length) at a key loggerhead sea turtle (Caretta caretta) rookery (Zakynthos, Greece) in the Mediterranean. For each of the six nesting beaches, we identified (1) the area of beach currently used by turtles, (2) the area of the beach anticipated to become inundated under each SLR, (3) the area of beach anticipated to become unsuitable for nesting under each SLR, (4) the potential for habitat loss under the examined SLR, and (5) the extent to which the beaches may shift in relation to natural (i.e. cliffs) and artificial (i.e. beach front development) physical barriers. Even under the most conservative 0.2 m SLR scenario, about 38% (range: 31–48%) total nesting beach area would be lost, while an average 13% (range: 7–17%) current nesting beach area would be lost. About 4 km length of nesting habitat (representing 85% of nesting activity) would be lost under the 0.9 m scenario, because cliffs prevent landward beach migration. In comparison, while the other 2 km of beach (representing 15% nests) is also at high risk, it has the capacity for landward migration, because of an adjoining sand-dune system. Therefore, managers should strengthen actions on this latter area, as a climatically critical safeguard for future sea turtle nesting activity, in parallel to regularly assessing and revising measures on the current high-use nesting habitats of this important Mediterranean loggerhead population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso-energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro-medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of ∼16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of ∼38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015, Springer Science+Business Media Dordrecht. Adaptation options in response to climate impact scenarios for marine mammals and seabirds were developed based on the IPCC vulnerability framework. Under this framework, vulnerability to the physical effects of climate change can be reduced by adaptation options that reduce exposure of individuals, reduce the sensitivity of individuals, and increase the adaptive capacity of individual/species to cope with climate change. We evaluated options in each vulnerability category with three screening tools collectively forming an approach we term sequential adaptation prioritization for species. These tools were designed to evaluate (i) technical aspects (cost-benefit-risk, CBR), (ii) institutional barriers, and (iii) potential social acceptability. The CBR tool identified which adaptation options were high cost and low benefit, might be discarded, and which were high benefit and low cost, might be rapidly implemented (depending on risk). Low cost and low benefit options might not be pursued, while those that are high cost, but high benefit deserve further attention. Even with technical merit, adaptation options can fail because of institutional problems with implementation. The second evaluation tool, based on the conceptual framework on barriers to effective climate adaptation, identifies where barriers may exist, and leads to strategies for overcoming them. Finally, adaptation options may not be acceptable to society at large, or resisted by vocal opponents or groups. The social acceptability tool identifies potentially contested options, which may be useful to managers charged with implementing adaptation options. Social acceptability, as scored by experts, differed from acceptability scored by the public, indicating the need to involve the public in assessing this aspect. Scores from each tool for each scenario can be combined to rank the suite of adaptation options. This approach provides useful tools to assist conservation managers in selecting from a wide range of adaptation strategies; the methodology is also applicable to other conservation sectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barramundi (Lates calcarifer), a catadromous teleost of commercial interest, perform well when fed a wide range of dietary oils. However, the range of alternative oils now being explored is typically rich in saturated and monounsaturated fatty acids (SFA and MUFA). In this study, the response of juvenile barramundi (47.0 g per fish initial weight) fed isolipidic and isoenergetic diets with 82 g kg−1 added oil was tested. The experimental test diets had a 2 : 1 or 1 : 2 ratio of SFA to MUFA (SFA-D and MUFA-D, respectively) compared to a control diet (CTRL-D) fed for 8 weeks. The diets containing mostly olive oil (dietary MUFA-D) and mostly refined palm oil (dietary SFA-D) did not impact the growth performance or feed utilization parameters of the barramundi. The in vivo beta-oxidation activity was consistent with the dietary fatty acid composition, with the most dominant FA being heavily beta-oxidized. Together, the in vivo whole-body mass balance of fatty acids showed that n-3 long-chain polyunsaturated fatty acids (LC-PUFA) were most efficiently utilized in the SFA-D- and MUFA-D-fed fish. This study provides evidence that additional dietary MUFA and SFA are suitable lipid classes for juvenile barramundi and they are both equally efficient at sparing LC-PUFA from an oxidative fate.