213 resultados para Ionic liquid-functionalized silica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of sulfonate based copolymer ionomers based on a combination of ionic liquid and sodium cations have been prepared in different ratios. This system was designed to improve the ionic conductivity of ionomers by partially replacing sodium cations with bulky cations that are less associated with anion centres on the polymer backbone. This provides more conduction sites for sodium to ‘hop’ to in the ionomers. Characterization showed the glass transition and 15N chemical shift of the ionomers did not vary significantly as the amount of Na+ varied, while the ionic conductivity increased with decreasing Na+ content, indicating conductivity is increasingly decoupled from Tg. Optical microscope images showed phase separation in all compositions, which indicated the samples were inhomogeneous. The introduction of low molecular weight plasticizer (PEG) reduced the Tg and increased the ionic conductivity significantly. The inclusion of PEG also led to a more homogeneous material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we monitor the dissolution of several natural protein fibres such as wool, human hair and silk, in various ionic liquids (ILs). The dissolution of protein-based materials using ILs is an emerging area exploring the production of new materials from waste products. Wool is a keratin fibre, which is extensively used in the textiles industry and as a result has considerable amounts of waste produced each year. Wool, along with human hair, has a unique morphology whereby the outer layer, the cuticle, is heavily cross linked with disulphide bonds, whereas silk does not have this outer layer. Here we show how ILs dissolve natural protein fibres and how the mechanism of dissolution is directly related to the structure and morphology of the wool fibre. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Textiles are commonly made from intimate blends of polyester and cotton, which makes recycling very difficult. We report for the first time the use of ionic liquid in the separation of polyester cotton blends. By selective dissolution of the cotton component, the polyester component can be separated and recovered in high yield. This finding presents an environmentally benign approach to recycling textile waste. © 2014 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoredox catalysis with the use of a stable, reusable silica-bound chromophore was applied to the intramolecular cyclization of a series of 2-benzylidenehydrazinecarbothioamides to give 5-phenyl-1,3,4-thiadiazol-2-amines. The catalyst was readily prepared by carbodiimide-mediated coupling of commercially available amine-functionalized silica beads to a carboxylic acid functionalized ruthenium complex. The immobilized catalyst was readily removed from the reaction product by filtration and was used eight times without loss of catalytic activity. This simple, safe, and practical method is an attractive alternative to conventional procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we report water-soluble complexes of an acrylamide copolymer and ionic liquids for inhibiting shale hydration. The copolymer, denoted as PAAT, was synthesised via copolymerisation of acrylamide (AM), acrylic acid (AA) and N,N-diallyl-4-methylbenzenesulfonamide (TCDAP), and the ionic liquids used were 3-methyl imidazoliumcation-based tetrafluoroborates. X-ray diffraction showed that compared with commonly used KCl, the water-soluble complex of PAAT with 2 wt% ionic liquid 1-methyl-3-H-imidazolium tetrafluoroborate (HmimBF4) could remarkably reduce the d-spacing of sodium montmorillonite in water from 19.24 to 13.16 Å and effectively inhibit clay swelling. It was also found that the PAAT-HmimBF4 complex with 2 wt% HmimBF4 could retain 75% of the shale indentation hardness and increase the anti-swelling ratio to 85%. 13C NMR revealed that there existed interactions between PAAT and HmimBF4. Moreover, the thermal stability of the PAAT-HmimBF4 complex is superior to PAAT, suggesting that this water-soluble complex can be used to inhibit clay and shale hydration in high-temperature oil and gas wells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of ionic liquids based on polyethylene glycol (PEG) with different molecular weights were prepared for inhibiting shale hydration and swelling. The antiswelling ratio was measured to investigate the effect of different PEG-based ionic liquids on bentonite volume expansion, and it has shown that the ionic liquid based PEG200, i.e. PEG with molecular weight of 200, exhibited superior inhibition. The structures of the PEG200-based ionic liquids were characterized by 1H NMR studies. The XRD results indicated that the PEG200-based ionic liquids intercalated into sodium montmorillonite (Na-MMT) reducing the water uptake by the clay. The formation of complexes of Na-MMT and PEG200-based ionic liquids was also verified by FTIR spectroscopy. Thermal degradation analysis suggested that the PEG200-based ionic liquids accessed the interlamellar spaces of Na-MMT and reduced the water content of the complexes obtained. Moreover, no breaks and collapse were observed on the shale samples after immersion in PEG200-based ionic liquid solutions. All the PEG200-based ionic liquids showed biodegradability and potential application in effective inhibition for clay hydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tris(2,2′-bipyridyl) complexes of cobalt(II) and (III) ([Co(bpy)3]2+/3+) produce a redox couple of great interest in thermoelectrochemical cells and dye sensitized solar cells including both types of devices based on ionic liquid electrolytes. We present a systematic study of the electrochemistry of [Co(bpy)3]2+ [NTf2]-2 in two ionic liquids (ILs) based on the 1-ethyl-3-methylimidazolium (C2mim) cation and two ILs based on the 1-butyl-1-methylpyrrolidinium cation (C4mpyr), as well as three aprotic molecular solvents. Platinum (Pt) and glassy carbon (GC) working electrodes were compared. In all solvents better electrochemical responses were observed on GC, which yielded higher currents in the cyclic voltammograms and lower rate constants for the redox reaction. The [Co(bpy)3]1+/2+ couple is also readily observed, but this redox reaction is chemically irreversible, possibly because the [Co(bpy)3]1+ complex dissociates. However, the [Co(bpy)3]1+/2+ reaction is chemically reversible in all of the solvents studied, except 3-methoxypropionitrile, if excess of 2,2′-bipyridyl is added to the solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen reduction reaction has been the subject of intensive research during decades due to their importance in life processes such as biological respiration, and also as a cathodic process in energy storage devices (e.g. fuel cells and air batteries). Detailed reviews on the oxygen reduction reaction in aqueous and non-aqueous media are available in the literature but it is lacking in the case of ionic liquids. Therefore a comprehensive review on the oxygen reduction reaction (ORR) in ionic liquids is described in this chapter in order to compile the state of the art from a fundamental point of view and improve the current knowledge towards not only fundamental but also practical applications. The oxygen reduction reaction mechanism in neat imidazolium, pyrrolidinium, quaternary ammonium, and phosphonium-based ionic liquids, which mainly undergo one-electron pathway leading to the generation of superoxide anion (O2•-), is the main topic of this chapter. The reversibility of the O2/O2•- redox couple is highly dependent on the composition of the ionic liquid, as an example superoxide is more stable in the presence of aliphatic and alicyclic cations than in the presence of aromatic rings. Furthermore, the influence of protic and aprotic additives in the ORR mechanism is also explained in this chapter together with the influence in electrochemical parameters such as formal potential, E0'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their promising properties, phosphonium based ionic liquids have attracted little attention as compared to their nitrogen-based cation counterparts. This study focuses on the properties of a family of small phosphonium imide ionic liquids, as well as the effect of lithium salt addition to these. The 6 ionic liquids were either alkyl, cyclic or nitrile functionalised phoshonium cations with bis(trifluoromethanesulfonyl)imide, NTf2, or bis(fluorosulfonyl)imide (FSI) as anion. Amongst the properties investigated were ionic conductivity, viscosity, thermal behaviour, electrochemical stability and the reversibility of electrochemical lithium cycling. All ionic liquids showed very promising properties e.g. having low transition temperatures, high electrochemical stabilities, low viscosities and high conductivities. Particularly the trimethyl phosphonium ionic liquids showed some of the highest conductivities reported amongst phosphonium ionic liquids generally. The combination of electrochemical stability, high conductivity and reversible lithium cycling makes them promising systems for energy storage devices such as lithium batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order for sodium batteries to become a safe, lower cost option for large scale energy storage, minimising the price of all components is important. We report here on the application of a pyrrolidinium room temperature ionic liquid comprising the dicyanamide anion as a successful electrolyte system for sodium metal batteries that does not contain expensive fluorinated species. The effects of plating/stripping of sodium from Na metal electrodes has been investigated in a symmetrical Na | electrolyte | Na configuration at a current density of 10 μA cm− 2. Comparisons are drawn to reference organic electrolytes comprising propylene carbonate-fluoroethylene carbonate. Residual water molecules in the ionic liquid electrolyte are observed to have a significant effect upon the surface film and subsequent favourable plating/stripping behaviour of symmetrical cells and this is explored in detail. An increase of the moisture content from 90 ppm to 400 ppm impedes both electrodeposition and electrodissolution of the Na+/Na. This is investigated at Ni electrodes using cyclic voltammetry at different Na+-salt concentrations to further understand the mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High conductivity in single ion conducting polymer electrolytes is still the ultimate aim for many electrochemical devices such as secondary lithium batteries. Achieving effective ion dissociation in these cases remains a challenge since the active ion tends to remain in close proximity to the backbone charge as a result of a low degree of ion dissociation. A unique aspect of this dissociation problem in polyelectrolytes is the repulsion between the backbone charges created by dissociation. One way of enhancing ion dissociation in polyelectrolyte systems is to use copolymers in which only a fraction (<20%) of the mer units are charged and where the comonomer is itself chosen to be polar and preferably to be compatible with potential solvents. We have also found that certain dissociation enhancers based on ionic liquids or boroxine ring compounds can lead to high ionic conductivity. In the cases where an ionic liquid is used as the solvent in a polyelectrolyte gel, the viscosity of the ionic liquid and its hydrophilicity are critical to achieving high conductivity. Compounds based on the dicyanamide anion appear to be very effective ionic solvents; polyelectrolyte gels incorporating such ionic liquids exhibit conductivities as high as 10−2 S/cm at room temperature. In the case of boroxine ring dissociation enhancers, gels based on poly(lithium-2-acrylamido-2-methyl-1-propanesulfonate) and ethylene carbonate produce conductivities approaching 10−3 S/cm. This paper will discuss these approaches for achieving higher conductivity in polyelectrolyte materials and suggest future directions to ensure single ion transport.