183 resultados para Cerium alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this article is to investigate the drilling of carbon fiber-reinforced plastic (CFRP) composite/metal stack-ups to have a details picture of the developments in this complex area. The forces and torque, chip shape, surface finish and geometry, and tool material and tool wear for drilling composite/metal stack-ups have been analyzed in details in addition to drilling mechanism of CFRP. The relation between input and output parameters was discussed and the trend of input parameters for damage free and tight tolerance holes has been investigated based on the literature. The main findings are (i) heat, built-up edge and chips generated from drilling of metallic layers damages CFRP surface, (ii) order of material layers affects the drilling outcomes significantly, (iii) coatings and step-shape on the cutting tool improves the tool performance, (iv) tool materials should be selected based on the material of metallic layer, (v) chipping, adhesion, abrasion and attrition are main tool wear mechanisms during machining of CFRP/metal stacks and (vi) application of coolant improves the machinability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation behaviour of two single phase binary alloys, Mg-5Y and Mg-10Y, have been examined. In compression, two twin types were observed, the common {101¯2} twin as well as the less common {112¯1} extension twin. It is shown that the {112¯1} twin is much less sensitive to solute concentration than the {101¯2} twin, and it is suggested that the simple atomic shuffle of the {112¯1} twin reduces the solute strengthening imparted by Y additions. The common {101¯2} twin showed significant hardening as a result of alloying with Y. An analysis of solute behaviour has indicated that of the four chemical parameters investigated, i.e. atomic size, shear modulus, electronegativity and solute distribution, it appears to be the larger atomic radius of Y compared to Mg that increases the stress required to activate the {101¯2} twin. It is suggested that the large atomic radius inhibits the atomic shuffling process which accompanies the twinning shear in this twin type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five types of Mg-5Al alloys with different weight percentages of Zn ranging from 0 to 4 wt.% were examined using electrochemical techniques and surface analysis. The electrochemical results indicated that the Mg-5Al alloys containing Zn have a lower corrosion and hydrogen evolution rates than the Mg-5Al based specimens with a decrease of value being observed with the decrease in Zn content. Zn addition induced the precipitation of Mg-Al and Mg-Zn phases in the Mg matrix along with grain refinement and increased an interaction of Zn oxide with Mg and Al products serving as a corrosion barrier. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Magnesium-based alloys containing appropriate quantities of Strontium can induce optimal bone formation. Surface modification of these alloys with Collagen-I increased mineral deposition on the peri-implant surface over shorter periods of time as compared to the unmodified alloys, indicating the role of Collagen-I and Strontium concentration in bone resorption and remodelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qi developed a novel thermomechanical processing route for the grain refinement of titanium alloys. This leads to a well-balanced superior mechanical property, which is vital for modern air transport. The outcomes of this project are prospective to enhance titanium application and the long-term viability of Australian resources and manufacturing industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to assess a number of coatings developed for Mg for biomedical applications. The Mg substrates were high-purity (HP) Mg and ME10, an alloy recently developed for improved extrudability. The research utilized the new fishing-line specimen configuration to allow direct comparison to our recent in vivo and in vitro measurements. The in vitro measurements were immersion tests of fishing-line specimens immersed in Nor's solution at 37 °C. Tests of substantial duration are needed because the corrosion rates of uncoated samples are low. Nor's solution is the designation given to Hank's solution through which CO2 is bubbled at a partial pressure of 0.009 atm. In this solution, pH is maintained constant by the interaction of CO2 and the bicarbonate ions in the solution. This is the same buffer as that which maintains the pH of blood. Coatings examined were: (i) an anodization using a bio-friendly alkaline electrolyte consisting of phosphate, borate, and metasilicate, (ii) octyltrimethoxysilane (OSi), (iii) 1,2-bis[triethoxysilyl]ethane (BTSE), (iv) anodization+OSi, and (v) anodization + BTSE. The performance of coated samples was comparable to or better than that of the uncoated samples, and there was a substantially better performance for the ME10 samples after anodization+OSi. Reasons for the various performances are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Novel Mg-Zr-Sr and Mg-1Zr-2Sr-xDy/yHo alloys have recently been developed for use as biodegradable implant materials. These alloys are recommended to be promising biodegradable implant materials as they have enhanced corrosion resistance and excellent biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De-alloying of S-phase in AA2024-T3 in the presence chlorides, is well-known. However, it is unclear how rare earth mercaptoacetate inhibitors affect this process when immersed in a 0.1. M NaCl solution. This paper analyses data obtained using EPMA on AA2024-T3 surfaces before and after a 16. min immersion period. Cerium and praseodymium mercaptoacetate inhibited the de-alloying process of S-phase particles. Although no significant change in composition was observed for cathodic intermetallics, each appeared to participate in local corrosion reactions as evidenced by the development of surface oxides. Clustering between S-phase and one of the Cu-containing intermetallic domains was also evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA[U+05F3]s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper reviews recent progress in atomic-scale characterisation of composition and nanostructure of light alloy materials using the technique of atom probe tomography. In particular, the present review will highlight atom-by-atom analysis of solid solution architecture, including solute clustering and short-range order, with reference to current limitations of spatial resolution and detector efficiency of atom probe tomography and methods to address these limitations. This leads to discussion of prediction of mechanical properties by simulation and modelling of the strengthening effect exerted by solute clusters and the role of experimental atom probe data to assist in this process. The unique contribution of atom probe tomography to the study of corrosion and hydrogen embrittlement of light alloys will also be discussed as well as a brief insight into its potential application for the investigation of solute strengthening of twinning in Mg alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The decomposition sequence of the supersaturated solid solution leading to the formation of the equilibrium S (Al2CuMg) phase in AlCuMg alloys has long been the subject of ambiguity and debate. Recent high-resolution synchrotron powder diffraction experiments have shown that the decomposition sequence does involve a metastable variant of the S phase (denoted S1), which has lattice parameters that are distinctly different to those of the equilibrium S phase (denoted S2). In this paper, the difference between these two phases is resolved using high-resolution synchrotron and neutron powder diffraction and atom probe tomography, and the transformation from S1 to S2 is characterised in detail by in situ synchrotron powder diffraction. The results of these experiments confirm that there are no significant differences between the crystal structures of S1 and S2, however, the powder diffraction and atom probe measurements both indicate that the S1 phase forms with a slight deficiency in Cu. The in situ isothermal aging experiments show that S1 forms rapidly, reaching its maximum concentration in only a few minutes at high temperatures, while complete conversion to the S2 phase can take thousands of hours at low temperature. The kinetics of S phase precipitation have been quantitatively analysed for the first time and it is shown that S1 phase forms with an average activation energy of 75 kJ/mol, which is much lower than the activation energy for Cu and Mg diffusion in an Al matrix (136 kJ/mol and 131 kJ/mol, respectively). The mechanism of the replacement of S1 with the equilibrium S2 phase is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al-Fe alloys prepared with wide-ranging cooling rates (0.1. °C/s to 500. °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al-Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.