181 resultados para Mitochondrial dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The popular recreational drug MDMA or “ecstasy” is a selective serotonin neurotoxin in many species and has been found to be associated with memory dysfunction in human beings. Recent studies suggest that this impairment persists after cessation of use for periods up to at least one year. However, there is no clear indication as yet concerning which stage of memory processing is impaired as a result of MDMA use. In the current study, 31 current MDMA users and 30 MDMA users who had been abstinent for more than two years were compared with 30 controls on the WMS-III. The results suggest that MDMA use is associated with memory dysfunction and that this dysfunction persists for up to two years after cessation of use. Importantly, the findings suggest that this memory dysfunction may be due to interference at the encoding stage of memory processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the protocol for a review and there is no abstract. The objectives are as follows:

To assess the effects of nurse-led titration of ACEIs, beta-adrenergic blocking agents and ARBs in patients with left ventricular systolic dysfunction in terms of safety and patient outcomes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rabbits, mean arterial pressure (MAP) increases in response to fat feeding, but does not increase further with progressive weight gain. We documented the progression of adiposity and the alterations in endocrine/cardiovascular function in response to fat feeding in rabbits, to determine whether stabilization of MAP after 3 weeks could be explained by stabilization of neurohormonal factors. Rabbits were fed a control diet or high-fat diet for 9 weeks (n¼23). Fat feeding progressively increased body mass and adiposity. Heart rate (HR) was elevated by week 3 (15±3%) but changed little thereafter. The effects of fat feeding on MAP were dependent on baseline MAP and peaked at 3 weeks. From baseline, MAP p80mmHg, MAP had increased by 8.1±1.3, 4.7±1.7 and 5.6±1.2mmHg, respectively, 3, 6 and 9 weeks after commencing the high-fat diet, but by only 2.6±1.5, 3.0±1.7 and 3.9±1.4mmHg, respectively, in control rabbits. Fat feeding did not increase MAP from a baseline 480mmHg. Plasma concentrations of leptin and insulin increased during the first 3–6 weeks of fat feeding and then stabilized (increasing by 111±17% and 731±302% by week 9, respectively), coinciding with the pattern of changes in MAP and HR. Plasma total cholesterol, triglycerides, renin activity, aldosterone and atrial natriuretic peptide were not significantly altered by fat feeding. Given that the changes in plasma leptin and insulin mirrored the changes in MAP and HR, leptin and insulin may be important factors in the development of hypertensionand tachycardia in the rabbit model of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1) antioxidant and oxidative stress markers, (2) aortic mRNA of NADPH oxidase (NOX) subunits and superoxide dismutase (SOD) isoforms and (3) endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22phox, NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA) was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 - generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE : Annexin-A1 (ANX-A1) is an endogenous, glucocorticoid-regulated anti-inflammatory protein. The N-terminal-derived peptide Ac-ANX-A12–26 preserves cardiomyocyte viability, but the impact of ANX-A1-peptides on cardiac contractility is unknown. We now test the hypothesis that ANX-A1 preserves post-ischaemic recovery of left ventricular (LV) function.

EXPERIMENTAL APPROACH : Ac-ANX-A12–26 was administered on reperfusion, to adult rat cardiomyocytes as well as hearts isolated from rats, wild-type mice and mice deficient in endogenous ANX-A1 (ANX-A1–/–). Myocardial viability and recovery of LV function were determined.

KEY RESULTS: Ischaemia–reperfusion markedly impaired both cardiomyocyte viability and recovery of LV function by 60%. Treatment with exogenous Ac-ANX-A12–26 at the onset of reperfusion prevented cardiomyocyte injury and significantly improved recovery of LV function, in both intact rat and wild-type mouse hearts. Ac-ANX-A12–26 cardioprotection was abolished by either formyl peptide receptor (FPR)-nonselective or FPR1-selective antagonists, Boc2 and cyclosporin H, but was relatively insensitive to the FPR2-selective antagonist QuinC7. ANX-A1-induced cardioprotection was associated with increased phosphorylation of the cell survival kinase Akt. ANX-A1−/− exaggerated impairment of post-ischaemic recovery of LV function, in addition to selective LV FPR1 down-regulation.

CONCLUSIONS AND IMPLICATIONS : These data represent the first evidence that ANX-A1 affects myocardial function. Our findings suggest ANX-A1 is an endogenous regulator of post-ischaemic recovery of LV function. Furthermore, the ANX-A1-derived peptide Ac-ANX-A12–26 on reperfusion rescues LV function, probably via activation of FPR1. ANX-A1-based therapies may thus represent a novel clinical approach for the prevention and treatment of myocardial reperfusion injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the muscle structure-function relationships that underlie the aerobic capacity of an insectivorous, small (~15?g) marsupial, Sminthopsis crassicaudata (Family: Dasyuridae), to obtain further insight into energy use patterns in marsupials relative to those in placentals, their sister clade within the Theria (advanced mammals). Disparate hopping marsupials (Suborder Macropodiformes), a kangaroo (Macropus rufus) and a rat-kangaroo (Bettongia penicillata), show aerobic capabilities as high as those of 'athletic' placentals. Equivalent muscle mitochondrial volumes and cardiovascular features support these capabilities. We examined S. crassicaudata to determine whether highly developed aerobic capabilities occur elsewhere in marsupials, rather than being restricted to the more recently evolved Macropodiformes. This was the case. Treadmill-trained S. crassicaudata attained a maximal aerobic metabolic rate (VO2,max or MMR) of 272ml O2min-1kg -1 (N=8), similar to that reported for a small (?20g), 'athletic' placental, Apodemus sylvaticus, 264ml O2min -1kg-1. Hopping marsupials have comparable aerobic levels when body mass variation is considered. Sminthopsis crassicaudata has a basal metabolic rate (BMR) about 75% of placental values but it has a notably large factorial aerobic scope (fAS) of 13, elevated fAS also features in hopping marsupials. The VO2,max of S. crassicaudata was supported by an elevated total muscle mitochondrial volume, which was largely achieved through high muscle mitochondrial volume densities, Vv(mt,f), the mean value being 14.0±1.33%. These data were considered in relation to energy use levels in mammals, particularly field metabolic rate (FMR). BMR is consistently lower in marsupials, but this is balanced by a high fAS, such that marsupial MMR matches that of placentals. However, FMR shows different mass relationships in the two clades, with the FMR of small (<, 125 g) marsupials, such as S. crassicaudata, being higher than that in comparably sized placentals, with the reverse applying for larger marsupials. The flexibility of energy output in marsupials provides explanations for this pattern. Overall, our data refute widely held notions of mechanistically closely linked relationships between body mass, BMR, FMR and MMR in mammals generally.