172 resultados para Glucose-transporter Isoforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined whole-body insulin sensitivity, long-chain fatty acyl coenzyme A (LCACoA) content, skeletal muscle triglyceride (TGm) concentration, fatty acid transporter protein content, and oxidative enzyme activity in eight patients with type 2 diabetes (TYPE 2); six healthy control subjects matched for age (OLD), body mass index, percentage of body fat, and maximum pulmonary O2 uptake; nine well-trained athletes (TRAINED); and four age-matched controls (YOUNG). Muscle biopsies from the vastus lateralis were taken before and after a 2-h euglycemic-hyperinsulinemic clamp. Oxidative enzyme activities, fatty acid transporters (FAT/CD36 and FABPpm), and TGm were measured from basal muscle samples, and total LCACoA content was determined before and after insulin stimulation. Whole-body insulin-stimulated glucose uptake was lower in TYPE 2 (P < 0.05) than in OLD, YOUNG, and TRAINED. TGm was elevated in TYPE 2 compared with all other groups (P < 0.05). However, both basal and insulin-stimulated skeletal muscle LCACoA content were similar. Basal citrate synthase activity was higher in TRAINED (P < 0.01), whereas β-hydroxyacyl CoA dehydrogenase activity was higher in TRAINED compared with TYPE 2 and OLD. There was a significant relationship between the oxidative capacity of skeletal muscle and insulin sensitivity (citrate synthase, r = 0.71, P < 0.001; β-hydroxyacyl CoA dehydrogenase, r = 0.61, P = 0.001). No differences were found in FAT/CD36 protein content between groups. In contrast, FABPpm protein was lower in OLD compared with TYPE 2 and YOUNG (P < 0.05). In conclusion, despite markedly elevated skeletal muscle TGm in type 2 diabetic patients and strikingly different levels of whole-body glucose disposal, both basal and insulin-stimulated LCACoA content were similar across groups. Furthermore, skeletal muscle oxidative capacity was a better predictor of insulin sensitivity than either TGm concentration or long-chain fatty acyl CoA content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which brain structural abnormalities might serve as neurobiological endophenotypes that mediate the link between the variation in the promoter of the serotonin transporter gene (5-HTTLPR) and depression is currently unknown. We therefore investigated whether variation in hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex volumes at age 12 years mediated a putative association between 5-HTTLPR genotype and first onset of major depressive disorder (MDD) between age 13–19 years, in a longitudinal study of 174 adolescents (48% males). Increasing copies of S-alleles were found to predict smaller left hippocampal volume, which in turn was associated with increased risk of experiencing a first onset of MDD. Increasing copies of S-alleles also predicted both smaller left and right medial OFC volumes, although neither left nor right medial OFC volumes were prospectively associated with a first episode of MDD during adolescence. The findings therefore suggest that structural abnormalities in the left hippocampus may be present prior to the onset of depression during adolescence and may be partly responsible for an indirect association between 5-HTTLPR genotype and depressive illness. 5-HTTLPR genotype may also impact upon other regions of the brain, such as the OFC, but structural differences in these regions in early adolescence may not necessarily alter the risk for onset of depression during later adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate amounts of copper in milk are critical for normal neonatal development, however the mechanisms regulating copper supply to milk have not been clearly defined. PMC42-LA cell cultures representative of resting, lactating and suckled mammary epithelia were used to investigate the regulation of the copper uptake protein, CTR1. Both the degree of mammary epithelial differentiation (functionality) and extracellular copper concentration greatly impacted upon CTR1 expression and its plasma membrane association. In all three models (resting, lactating and suckling) there was an inverse correlation between extracellular copper concentration and the level of CTR1. Cell surface biotinylation studies demonstrated that as extracellular copper concentration increased membrane associated CTR1 was reduced. There was a significant increase in CTR1 expression (total and membrane associated) in the suckled gland model in comparison to the resting gland model, across all copper concentrations investigated (0-50 μM). Regulation of CTR1 expression was entirely post-translational, as quantitative real-time PCR analyses showed no change to CTR1 mRNA between all models and culture conditions. X-ray fluorescence microscopy on the differentiated PMC42-LA models revealed that organoid structures distinctively accumulated copper. Furthermore, as PMC42-LA cell cultures became progressively more specialised, successively more copper accumulated in organoids (resting

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to investigate whether skeletal muscle from whole body creatine transporter (CrT; SLC6A8) knockout mice (CrT(-/y)) actually contained creatine (Cr) and if so, whether this Cr could result from an up regulation of muscle Cr biosynthesis. Gastrocnemius muscle from CrT(-/y) and wild type (CrT(+/y)) mice were analyzed for ATP, Cr, Cr phosphate (CrP), and total Cr (TCr) content. Muscle protein and gene expression of the enzymes responsible for Cr biosynthesis L-arginine:glycine amidotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) were also determined as were the rates of in vitro Cr biosynthesis. CrT(-/y) mice muscle contained measurable (22.3 ± 4.3 mmol.kg(-1) dry mass), but markedly reduced (P < 0.05) TCr levels compared with CrT(+/y) mice (125.0 ± 3.3 mmol.kg(-1) dry mass). AGAT gene and protein expression were higher (~3 fold; P < 0.05) in CrT(-/y) mice muscle, however GAMT gene and protein expression remained unchanged. The in vitro rate of Cr biosynthesis was elevated 1.5 fold (P < 0.05) in CrT(-/y) mice muscle. These data clearly demonstrate that in the absence of CrT protein, skeletal muscle has reduced, but not absent, levels of Cr. This presence of Cr may be at least partly due to an up regulation of muscle Cr biosynthesis as evidenced by an increased AGAT protein expression and in vitro Cr biosynthesis rates in CrT(-/y) mice. Of note, the up regulation of Cr biosynthesis in CrT(-/y) mice muscle was unable to fully restore Cr levels to that found in wild type muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D. © 2014 the American Physiological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether impaired awareness of hypoglycemia (IAH) can be improved and severe hypoglycemia (SH) prevented in type 1 diabetes, we compared an insulin pump (continuous subcutaneous insulin infusion [CSII]) with multiple daily injections (MDIs) and adjuvant real-time continuous glucose monitoring (RT) with conventional self-monitoring of blood glucose (SMBG).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Current research suggests that glucose facilitates performance on cognitive tasks which possess an episodic memory component and a relatively high level of cognitive demand. However, the extent to which this glucose facilitation effect is uniform across the lifespan is uncertain. METHODS: This study was a repeated measures, randomised, placebo-controlled, cross-over trial designed to assess the cognitive effects of glucose in younger and older adults under single and dual task conditions. Participants were 24 healthy younger (average age 20.6 years) and 24 healthy older adults (average age 72.5 years). They completed a recognition memory task after consuming drinks containing 25 g glucose and a placebo drink, both in the presence and absence of a secondary tracking task. RESULTS AND CONCLUSIONS: Glucose enhanced recognition memory response time and tracking precision during the secondary task, in older adults only. These findings do not support preferential targeting of hippocampal function by glucose, rather they suggest that glucose administration differentially increases the availability of attentional resources in older individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The administration of a glucose drink has been shown to enhance cognitive performance with effect sizes comparable with those from pharmaceutical interventions in human trials. In the memory domain, it is currently debated whether glucose facilitation of performance is due to differential targeting of hippocampal memory or whether task effort is a more important determinant. Using a placebo-controlled, double-blind, crossover 2(Drink: glucose/placebo) × 2(Effort: ± secondary task) design, 20 healthy young adults' recognition memory performance was measured using the 'remember-know' procedure. Two high effort conditions (one for each drink) included secondary hand movements during word presentation. A 25 g glucose or 30 mg saccharine (placebo) drink was consumed 10 min prior to the task. The presence of a secondary task resulted in a global impairment of memory function. There were significant Drink × Effort interactions for overall memory accuracy but no differential effects for 'remember' or 'know' responses. These data suggest that, in some circumstances, task effort may be a more important determinant of the glucose facilitation of memory effect than hippocampal mediation. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Previous studies suggest child abuse and serotonergic polymorphism influence depression susceptibility and antidepressant efficacy. Polymorphisms of the norepinephrine transporter (NET) may also be involved. Research in the area is possibly clouded by under reporting of abuse in researcher trials. METHODS: Adults (n=51) with major depressive disorder has 8 weeks treatment with escitalopram or venlafaxine. Abuse history was obtained, the ongoing emotional impact of which was measured with the 15-item impact of event scale (IES-15). The 17-item Hamilton Depression Rating Scale (HDRS) was applied serially. Two NET polymorphisms (rs2242446 and rs5569) were assayed, blinded to HDRS ratings and abuse history. RESULTS: No subjects reporting abuse with high impact in adulthood (IES-15 ≥26, n=12) remitted; whereas 77% reporting low impact (IES-15 <26; n=26) remitted (p<0.001). Subjects reporting high impact abuse (n=12) had a 50-fold (95% confidence interval=4.85-514.6) greater odds of carrying rs2242446-TT genotype, but the small sample size leaves this finding vulnerable to type I error. CONCLUSIONS: The level of persisting impact of child abuse appears relevant to antidepressant efficacy, with susceptibility to such possibly being influence by NET rs2242446 polymorphism. Larger studies may be merited to expand on this pilot level finding given potential for biomarker utility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To compare the effectiveness and acceptability of self-monitoring of blood glucose with self-monitoring of urine glucose in adults with newly diagnosed Type 2 diabetes. METHODS: We conducted a multi-site cluster randomized controlled trial with practice-level randomization. Participants attended a structured group education programme, which included a module on self-monitoring using blood glucose or urine glucose monitoring. HbA1c and other biomedical measures as well as psychosocial data were collected at 6, 12 and 18 months. A total of 292 participants with Type 2 diabetes were recruited from 75 practices. RESULTS: HbA1c levels were significantly lower at 18 months than at baseline in both the blood monitoring group [mean (se) -12 (2) mmol/mol; -1.1 (0.2) %] and the urine monitoring group [mean (se) -13 (2) mmol/mol; -1.2 (0.2)%], with no difference between groups [mean difference adjusted for cluster effect and baseline value = -1 mmol/mol (95% CI -3, 2); -0.1% (95% CI -0.3, 0.2)]. Similar improvements were observed for the other biomedical outcomes, with no differences between groups. Both groups showed improvements in total treatment satisfaction, generic well-being, and diabetes-specific well-being, and had a less threatening view of diabetes, with no differences between groups at 18 months. Approximately one in five participants in the urine monitoring arm switched to blood monitoring, while those in the blood monitoring arm rarely switched (18 vs 1% at 18 months; P < 0.001). CONCLUSIONS: Participants with newly diagnosed Type 2 diabetes who attended structured education showed similar improvements in HbA1c levels at 18 months, regardless of whether they were assigned to blood or urine self-monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare the cumulative (3-day) effect of prolonged sitting on metabolic responses during a mixed meal tolerance test (MTT), with sitting that is regularly interrupted with brief bouts of light-intensity walking. Overweight/obese adults (n=19) were recruited for a randomized, 3-day, outpatient, cross-over trial involving: (1) 7-h days of uninterrupted sitting (SIT); and (2) 7-h days of sitting with light-intensity activity breaks [BREAKS; 2-min of treadmill walking (3.2 km/h) every 20 min (total: 17 breaks/day)]. On days 1 and 3, participants underwent a MTT (75 g of carbohydrate, 50 g of fat) and the incremental area under the curve (iAUC) was calculated from hourly blood samples. Generalized estimating equation (GEE) models were adjusted for gender, body mass index (BMI), energy intake, treatment order and pre-prandial values to determine effects of time, condition and time × condition. The glucose iAUC was 1.3 ± 0.5 and 1.5 ± 0.5 mmol·h·l(-1) (mean differences ± S.E.M.) higher in SIT compared with BREAKS on days 1 and 3 respectively (condition effect: P=0.001), with no effect of time (P=0.48) or time × condition (P=0.8). The insulin iAUC was also higher on both days in SIT (day 1: ∆151 ± 73, day 3: ∆91 ± 73 pmol·h·l(-1), P=0.01), with no effect of time (P=0.52) or time × condition (P=0.71). There was no between-treatment difference in triglycerides (triacylglycerols) iAUC. There were significant between-condition effects but no temporal change in metabolic responses to MTT, indicating that breaking up of sitting over 3 days sustains, but does not enhance, the lowering of postprandial glucose and insulin.