155 resultados para Geomechanical classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an empirical study of the development and application of a committee of neural networks on online pattern classification tasks is presented. A multiple classifier framework is designed by adopting an Adaptive Resonance Theory-based (ART) autonomously learning neural network as the building block. A number of algorithms for combining outputs from multiple neural classifiers are considered, and two benchmark data sets have been used to evaluate the applicability of the proposed system. Different learning strategies coupling offline and online learning approaches, as well as different input pattern representation schemes, including the "ensemble" and "modular" methods, have been examined experimentally. Benefits and shortcomings of each approach are systematically analyzed and discussed. The results are comparable, and in some cases superior, with those from other classification algorithms. The experiments demonstrate the potentials of the proposed multiple neural network systems in offering an alternative to handle online pattern classification tasks in possibly nonstationary environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textural image classification technologies have been extensively explored and widely applied in many areas. It is advantageous to combine both the occurrence and spatial distribution of local patterns to describe a texture. However, most existing state-of-the-art approaches for textural image classification only employ the occurrence histogram of local patterns to describe textures, without considering their co-occurrence information. And they are usually very time-consuming because of the vector quantization involved. Moreover, those feature extraction paradigms are implemented at a single scale. In this paper we propose a novel multi-scale local pattern co-occurrence matrix (MS_LPCM) descriptor to characterize textural images through four major steps. Firstly, Gaussian filtering pyramid preprocessing is employed to obtain multi-scale images; secondly, a local binary pattern (LBP) operator is applied on each textural image to create a LBP image; thirdly, the gray-level co-occurrence matrix (GLCM) is utilized to extract local pattern co-occurrence matrix (LPCM) from LBP images as the features; finally, all LPCM features from the same textural image at different scales are concatenated as the final feature vectors for classification. The experimental results on three benchmark databases in this study have shown a higher classification accuracy and lower computing cost as compared with other state-of-the-art algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new semi-supervised method to effectively improve traffic classification performance when few supervised training data are available. Existing semi supervised methods label a large proportion of testing flows as unknown flows due to limited supervised information, which severely affects the classification performance. To address this problem, we propose to incorporate flow correlation into both training and testing stages. At the training stage, we make use of flow correlation to extend the supervised data set by automatically labeling unlabeled flows according to their correlation to the pre-labeled flows. Consequently, the traffic classifier has better performance due to the extended size and quality of the supervised data sets. At the testing stage, the correlated flows are identified and classified jointly by combining their individual predictions, so as to further boost the classification accuracy. The empirical study on the real-world network traffic shows that the proposed method outperforms the state-of-the-art flow statistical feature based classification methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical problem for Internet traffic classification is how to obtain a high-performance statistical feature based classifier using a small set of training data. The solutions to this problem are essential to deal with the encrypted applications and the new emerging applications. In this paper, we propose a new Naive Bayes (NB) based classification scheme to tackle this problem, which utilizes two recent research findings, feature discretization and flow correlation. A new bag-of-flow (BoF) model is firstly introduced to describe the correlated flows and it leads to a new BoF-based traffic classification problem. We cast the BoF-based traffic classification as a specific classifier combination problem and theoretically analyze the classification benefit from flow aggregation. A number of combination methods are also formulated and used to aggregate the NB predictions of the correlated flows. Finally, we carry out a number of experiments on a large scale real-world network dataset. The experimental results show that the proposed scheme can achieve significantly higher classification accuracy and much faster classification speed with comparison to the state-of-the-art traffic classification methods.