174 resultados para Fibre nonlinearity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the fleece production of Angora wether goats provided with energy, to maintain liveweight, and polymer-encapsulated methionine while they were fed on poor quality roughage rations in early summer. Forty goats (mean fleece-free liveweight 28.5 kg) were randomly allotted to 5 treatments and housed individually for 12 weeks. The treatments were: control, fed to lose 5 kg liveweight; M, fed to maintain liveweight; and 3 maintenance rations with either 0.5, 1 or 2 g day-1 of polymer-encapsulated methionine. The basal ration was oaten chaff (56.8% digestible dry matter) and all maintenance- fed goats received a supplement of 150 g day- 1 gristed barley. Goats required an estimated 267 kJ ME kg-0.75 day-1 to maintain liveweight. Goats fed the control diet grew less mohair (P<0.05) with reduced mean fibre diameter (P< 0.05) than maintenance-fed goats (4.9 g day-1, 30.0 pm compared with 5.8 g day-1, 31.9 pm). For maintenance-fed animals, the addition of 1 g day- methionine (0.15% of dry matter intake) increased mohair growth by 0.8g day-1 (P<0.075). Feeding barley to prevent liveweight loss and feeding polymer-encapsulated methionine at maintenance is unlikely to result in economic responses in mohair production of goats grazing low quality summer pastures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims
To investigate the relationship between retinal nerve fibre layer thickness and peripheral neuropathy in patients with Type 2 diabetes, particularly in those who are at higher risk of foot ulceration.

Methods
Global and sectoral retinal nerve fibre layer thicknesses were measured at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). The level of neuropathy was assessed in 106 participants (82 with Type 2 diabetes and 24 healthy controls) using the 0–10 neuropathy disability score. Participants were stratified into four neuropathy groups: none (0–2), mild (3–5), moderate (6–8), and severe (9–10). A neuropathy disability score ‡ 6 was used to define those at higher risk of foot ulceration. Multivariable regression analysis was performed to assess the effect of neuropathy disability scores, age, disease duration and retinopathy on RNFL thickness.

Results
Inferior (but not global or other sectoral) retinal nerve fibre layer thinning was associated with higher neuropathy disability scores (P = 0.03). The retinal nerve fibre layer was significantly thinner for the group with neuropathy disability scores ‡ 6 in the inferior quadrant (P < 0.005). Age, duration of disease and retinopathy levels did not significantly influence retinal nerve fibre layer thickness. Control participants did not show any significant differences in thickness measurements from the group with diabetes and no neuropathy (P > 0.24 for global and all sectors).

Conclusions
Inferior quadrant retinal nerve fibre layer thinning is associated with peripheral neuropathy in patients with Type 2 diabetes, and is more pronounced in those at higher risk of foot ulceration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we monitor the dissolution of several natural protein fibres such as wool, human hair and silk, in various ionic liquids (ILs). The dissolution of protein-based materials using ILs is an emerging area exploring the production of new materials from waste products. Wool is a keratin fibre, which is extensively used in the textiles industry and as a result has considerable amounts of waste produced each year. Wool, along with human hair, has a unique morphology whereby the outer layer, the cuticle, is heavily cross linked with disulphide bonds, whereas silk does not have this outer layer. Here we show how ILs dissolve natural protein fibres and how the mechanism of dissolution is directly related to the structure and morphology of the wool fibre. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to overcome interfacial incompatibility issues in natural fibre reinforced polymer bio-composites, surface modifications of the natural fibres using complex and environmentally unfriendly chemical methods is necessary. In this paper, we demonstrate that the interfacial properties of cellulose-based bio-composites can be tailored through surface adsorption of polyethylene glycol (PEG) based amphiphilic block copolymers using a greener alternative methodology. Mixtures of water or water/acetone were used to form amphiphilic emulsions or micro-crystal suspensions of PEG based amphiphilic block copolymers, and their deposition from solution onto the cellulosic substrate was carried out by simple dip-coating. The findings of this study evidence that, by tuning the amphiphilicity and the type of building blocks attached to the PEG unit, the flexural and dynamic thermo-mechanical properties of cellulose-based bio-composites comprised of either polylactide (PLA) or high density polyethylene (HDPE) as a matrix, can be remarkably enhanced. The trends, largely driven by interfacial effects, can be ascribed to the combined action of the hydrophilic and hydrophobic components of these amphiphiles. The nature of the interactions formed across the fibre-matrix interface is discussed. The collective outcome from this study provides a technological template to significantly improve the performance of cellulose-based bio-composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex molecules have been successfully grafted onto the surface of unsized carbon fibre, a heterogeneous material which is a challenge to functionalise. The in situ generation of highly reactive phenyldiazo-species from their corresponding anilines was employed to achieve this task. The success of an initial proof-of-concept study (bearing a nitro moiety) supported by X-ray Photoelectron Spectroscopy (XPS) and physical characterisation, led to the design and synthesis of a more complex compound possessing a pendant amine moiety which could theoretically react with an epoxide based resin. After attachment to unsized oxidised fibres, analysis by XPS of the resulting fibres (fluorine used as an XPS tag) indicated a marked difference in functionalisation success which was attributed to steric factors, shown to be critical in influencing the attachment of the phenyldiazo-intermediate to the carbon fibre surface. Analysis of key fibre performance parameters of these fibres showed no change in elastic modulus, strength, surface topography or microscopic roughness when compared to the control unsized oxidised fibres. The functionalised fibres did however show a large increase in coefficient of friction. Single fibre fragmentation tests indicated a marked increase in interfacial shear strength, which was attributed to the pendent amine functionalities interacting with the epoxy resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the utilisation of an azomethine 1,3-dipolar cycloaddition reaction with carbon fibre to graft complex molecules onto the fibre surface. In an effort to enhance the interfacial interaction of the fibre to the matrix, the functionalised fibres possessed a pendant amine that is able to interact with epoxy resins. Functionalisation was supported by X-ray photoelectron spectroscopy and the grafting process had no detrimental effects on tensile strength compared with the control (untreated) fibres. Also, microscopic roughness (as determined by atomic force microscopy) and fibre topography were unchanged after the described treatment process. This methodology complements existing methodology aimed at enhancing the surface of carbon fibres for advanced material applications while not compromising the desirable strength profile. Single-fibre fragmentation tests show a statistically significant decrease in fragment length compared with the control fibres in addition to transverse cracking within the curing resin, both of which indicate an enhanced interaction between fibre and resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic is a known carcinogen found in the soil in gold mining regions at concentrations thousands of times greater than gold. Mining releases arsenic into the environment and surrounding water bodies. The main chemical forms of arsenic found in the environment are inorganic arsenite (As(III)) and arsenate (As(V)). Yabbies (Cherax destructor) accumulate arsenic at levels comparable to those in the sediment of their environment but the effect on their physiological function is not known. The effects of arsenic exposure (10 ppm sodium arsenite, AsNaO2 - 5.7 ppm As(III)) and 10 ppm arsenic acid, Na2HAsO4·7H2O - 2.6 ppm As(V)) for 40 days on the contractile function of the two major fibre types from the chelae were determined. After exposure, individual fibres were isolated from the chela, "skinned" (membrane removed) and attached to the force recording apparatus. Contraction was induced in solutions containing increasing [Ca(2+)] until a maximum Ca(2+)-activation was obtained. Submaximal force responses were plotted as a percentage of the maximum Ca(2+)-activated force. As(V) exposure resulted in lower levels of calcium required for activation than As(III) indicating an increased sensitivity to Ca(2+) after long term exposure to arsenate compared to arsenite. Myosin heavy chain and tropomyosin content in individual fibres was also decreased as a result of arsenic exposure. Single fibres exposed to As(V) produced significantly more force than muscle fibres from control animals. Long-term exposure of yabbies to arsenic alters the contractile function of the two major fibre types in the chelae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research investigates the design, activation and modelling of a new generation of hybrid materials; called shape memory alloy-composites. These hybrid materials exhibit reversible bending motion with a temperature change and have the potential to be employed in aerospace, automotive and robotic application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study developed new methodologies to enhance the performance of carbon fiber in epoxy-based composites. A unique interdisciplinary approach of organic chemistry and engineering resulting in excellent real world outcomes.