152 resultados para Data Mining, Rough Sets, Multi-Dimension, Association Rules, Constraint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectrum nature and heterogeneity within autism spectrum disorders (ASD) pose as a challenge for treatment. Personalisation of syllabus for children with ASD can improve the efficacy of learning by adjusting the number of opportunities and deciding the course of syllabus. We research the data-motivated approach in an attempt to disentangle this heterogeneity for personalisation of syllabus. With the help of technology and a structured syllabus, collecting data while a child with ASD masters the skills is made possible. The performance data collected are, however, growing and contain missing elements based on the pace and the course each child takes while navigating through the syllabus. Bayesian nonparametric methods are known for automatically discovering the number of latent components and their parameters when the model involves higher complexity. We propose a nonparametric Bayesian matrix factorisation model that discovers learning patterns and the way participants associate with them. Our model is built upon the linear Poisson gamma model (LPGM) with an Indian buffet process prior and extended to incorporate data with missing elements. In this paper, for the first time we have presented learning patterns deduced automatically from data mining and machine learning methods using intervention data recorded for over 500 children with ASD. We compare the results with non-negative matrix factorisation and K-means, which being parametric, not only require us to specify the number of learning patterns in advance, but also do not have a principle approach to deal with missing data. The F1 score observed over varying degree of similarity measure (Jaccard Index) suggests that LPGM yields the best outcome. By observing these patterns with additional knowledge regarding the syllabus it may be possible to observe the progress and dynamically modify the syllabus for improved learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning from imbalanced data is a challenging task in a wide range of applications, which attracts significant research efforts from machine learning and data mining community. As a natural approach to this issue, oversampling balances the training samples through replicating existing samples or synthesizing new samples. In general, synthesization outperforms replication by supplying additional information on the minority class. However, the additional information needs to follow the same normal distribution of the training set, which further constrains the new samples within the predefined range of training set. In this paper, we present the Wiener process oversampling (WPO) technique that brings the physics phenomena into sample synthesization. WPO constructs a robust decision region by expanding the attribute ranges in training set while keeping the same normal distribution. The satisfactory performance of WPO can be achieved with much lower computing complexity. In addition, by integrating WPO with ensemble learning, the WPOBoost algorithm outperformsmany prevalent imbalance learning solutions.