151 resultados para milling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron nitride nanosheets (BNNSs), so-called “white graphene”, have recently received increasing attention, both theoretically and experimentally. Although many synthetic procedures have been proposed for the synthesis of BNNSs, finding a simple, solvent-less, catalyst-free, and large-scale production route is still a challenge. Here, a facile, solvent-less, low cost, and high yield process is developed, in which mechanical solid-state exfoliation allows scalable production of crumple BNNSs from commercial BN powders with a high surface area. Importantly, these BNNSs show unprecedentedly high adsorption of proteins described by various adsorption isotherms and kinetics models. In addition, the saturated BNNSs exhibit excellent recyclability, and maintain a high sorption capacity even after five cycles through simply regeneration process of heating in air. This easy recyclability route further demonstrates the great potential of BNNSs for water cleaning application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Austempered Ductile Iron (ADI) is a type of nodular, ductile cast iron subjected to heat treatments-austenitising and austempering. Whilst machining is conducted prior to heat treatment and offers no significant difficulty, machining post heat treatment is demanding and often avoided. Phase transformation of retained austenite to martensite leading to poor machinability characteristics is a common problem experienced during machining. Study of phase transformations is an investigative study on the factors-plastic strain (εp) and thermal energy (Q) which effect phase transformations during machining. The experimental design consists of face milling grade 1200 at variable Depth of Cut (DoC) range from 1 to 4 mm, coolant on/off, at constant speed, 1992 rpm and feed rate, 0.1 mm/tooth. Plastic strain (εp) and martensite content (M) at fracture point for each grade was evaluated by tensile testing. The effect of thermal energy (Q) on phase transformations was also verified through temperature measurements at DoC 3 and 1 mm using thermocouples embedded into the workpiece. Finally, the amount of plastic strain (εp) and thermal energy (Q) responsible for a given martensite increase (M) during milling was related and calculated using a mathematical function, M=f (εp, Q). The future work of the thesis involves an in-depth study on the new link discovered through this research: mathematical model relating the role of plastic strain and thermal energy in martensite formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 In this thesis, the application of planetary ball milling for the efficient production of nanomaterials is systematically studied. Three inorganic materials: calcium carbonate (CaCO3), molybdenum disulphide (MoS2) and hexagonal-boron nitride (h-BN) are chosen as model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (p<0.001) as evidenced from fluorescence microscopy and cytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Milled silk particles with volume median particle size (d(0.5)) of 7 μm and 281 nm as well as silk snippets were used for loading of model drugs Orange G, Azophloxine, Rhodamine B, and Crystal Violet. Loading and release of these chemicals depended on the size of silk particles, pH, and the structure and properties of model drugs. Both types of silk particles reached equilibrium loading in less than 10 min due to high surface area whereas silk fibres needed more than 2-3 days to reach equilibrium, depending on the drug type. The uptake rate in fibres could be improved by increasing temperature. Both fibres and particles could slowly release the drugs over many days at 37 °C without a significant initial burst. As particle size decreased, the amount of model drug release also decreased. The release of drugs by the silk fibres was quicker than the silk particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stainless steel is the most widely used alloys of steel. The reputed variety of stainless steel having customised material properties as per the design requirements is Duplex Stainless Steel and Austenitic Stainless Steel. The Austenite Stainless Steel alloy has been developed further to be Super Austenitic Stainless Steel (SASS) by increasing the percentage of the alloying elements to form the half or more than the half of the material composition. SASS (Grade-AL-6XN) is an alloy steel containing high percentages of nickel (24%), molybdenum (6%) and chromium (21%). The chemical elements offer high degrees of corrosion resistance, toughness and stability in a large range of hostile environments like petroleum, marine and food processing industries. SASS is often used as a commercially viable substitute to high cost non-ferrous or non-metallic metals. The ability to machine steel effectively and efficiently is of utmost importance in the current competitive market. This paper is an attempt to evaluate the machinability of SASS which has been a classified material so far with very limited research conducted on it. Understanding the machinability of this alloy would assist in the effective forming of this material by metal cutting. The novelty of research associated with this is paper is reasonable taking into consideration the unknowns involved in machining SASS. The experimental design consists of conducting eight milling trials at combination of two different feed rates, 0.1 and 0.15 mm/tooth; cutting speeds, 100 and 150 m/min; Depth of Cut (DoC), 2 and 3 mm and coolant on for all the trials. The cutting tool has two inserts and therefore has two cutting edges. The trial sample is mounted on a dynamometer (type 9257B) to measure the cutting forces during the trials. The cutting force data obtained is later analyzed using DynaWare supplied by Kistler. The machined sample is subjected to surface roughness (Ra) measurement using a 3D optical surface profilometer (Alicona Infinite Focus). A comprehensive metallography process consisting of mounting, polishing and etching was conducted on a before and after machined sample in order to make a comparative analysis of the microstructural changes due to machining. The microstructural images were capture using a digital microscope. The microhardness test were conducted on a Vickers scale (Hv) using a Vickers microhardness tester. Initial bulk hardness testing conducted on the material show that the alloy is having a hardness of 83.4 HRb. This study expects an increase in hardness mostly due to work hardening may be due to phase transformation. The results obtained from the cutting trials are analyzed in order to judge the machinability of the material. Some of the criteria used for machinability evaluation are cutting force analysis, surface texture analysis, metallographic analysis and microhardness analysis. The methodology followed in each aspect of the investigation is similar to and inspired by similar research conducted on other materials. However, the novelty of this research is the investigation of various aspects of machinability and drawing comparisons between each other while attempting to justify each result obtained to the microstructural changes observed which influence the behaviour of the alloy. Due to the limited scope of the paper, machinability criteria such as chip morphology, Metal Removal Rate (MRR) and tool wear are not included in this paper. All aspects are then compared and the optimum machining parameters are justified with a scope for future investigations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to high demand in engineering materials especially with high strength to weight ratio and advantageous material properties such as wear resistance and thermal stability or high entropy. This essential parametric enhancement has led to the development of Multi Component High Entropy Alloys (MCHEA). It has been proposed in this study to investigate the machinability characteristics of MCHEA. The MCHEA are usually amalgamation with multiple elements such as aluminium, cobalt, manganese, nickel, chromium and titanium with their individual concentrations ranging from 5-35% overall. The experimental design consists of basic characterization of the material and conducting machinability trails-milling. The basic material characterization consists of evaluating bulk hardness, microstructural image generation, microhardness and chemical composition using spectrometry. The milling trails are conducted using 2 flute, 30º helix ball nose solid carbide end-mill cutting tool with combination of cutting parameters such as constant cutting speed, 30 m/min; varied feed, 0.01 mm/tooth and 0.02mm/tooth; depth of cuts, 1.5 and 3 mm and coolant on. The outputs obtained from the machining trails are subjected to analysis such as cutting force. In addition, the surface roughness of the material is evaluated using 3D optical surface profilometer. Similarly, the solutions to alleviate the drawbacks are also exemplified during machining of MCHEA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing synthetic methods for graphene based cathode materials, with low cost and in an environmentally friendly way, is necessary for industrial production. Although the precursor of graphene is abundant on the earth, the most common precursor of graphene is graphene oxide (GO), and it needs many steps and reagents for transformation to graphite. The traditional approach for the synthesis of GO needs many chemicals, thus leading to a high cost for production and potentially great amounts of damage to the environment. In this study, we develop a simple wet ball-milling method to construct a V2O5/graphene hybrid structure in which nanometre-sized V2O5 particles/aggregates are well embedded and uniformly dispersed into the crumpled and flexible graphene sheets generated by in situ conversion of bulk graphite. The combination of V2O5 nanoparticles/aggregates and in situ graphene leads the hybrid to exhibit a markedly enhanced discharge capacity, excellent rate capability, and good cycling stability. This study suggests that nanostructured metal oxide electrodes integrated with graphene can address the poor cycling issues of electrode materials that suffer from low electronic and ionic conductivities. This simple wet ball-milling method can potentially be used to prepare various graphene based hybrid electrodes for large scale energy storage applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tool deflection during milling operation leads to dimensional error, decreasing surface quality and increasing rejection rate. In this study, tool deflection during the milling of the inner surfaces of Ti–6Al–4V prosthetic acetabular shell produced by selective laser melting (SLM) was modelled. The first purpose of this research is to provide a general static cutting tool deflection model for ball nose cutters where deviation of machine components and tool holder are so small as to be considered negligible. This is because the values of machine component and tool holder deflection were lower than standard tolerances (10 μm) and found to be lower than 1/15 of tool deflection. The second and third objectives of this work involve calculating contact surfaces by determining workpiece and tool geometry and choosing second moment of inertia using a novel cross section method (CSM). Static models for three quasi-analytical methods (QAM) that are simple cantilever beam model (SCBM), two-section model (TWSM) and our three section model (THSM) are presented. THSM showed high accuracy which was validated by 3D finite element method (FEM3D) and experimental measurements. The accuracy of tool deflection calculation using THSM by computing, shank, flute and ball head deflection and also utilizing CSM to determine second moment of inertia showed notable improvements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The difference in the chemical and physical properties of boron nitride nanotube (BNNT) films and carbon nanotube (CNT) films can benefit tissue scaffolding and engineering. However, the production of dense films of pure BNNTs is more challenging than that of CNT films. In addition, BNNT films are usually extremely nonwettable to water, so surface modification is required before they can be used in bioapplications. In this chapter, the synthesis routes of high-density BNNT films are introduced, followed by their wettability properties and surface modification by plasma treatments. The cell proliferation on both pristine and wettability-modified BNNT films is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of various xylanase treatments applied at different stages of bread making process on dough rheological characteristics and bread quality attributes were investigated. Different doses (200, 400, 600, 800, and 1000 IU) of purified enzyme were applied at two stages (tempering and mixing). In milling and dough making processes, both types of flour (subjected to enzyme treatment during tempering and flour mixing) exhibited decreasing trend in water absorption, dough development time, dough stability, softening of dough, dough mixing time, viscosity peak, set back, and increasing tendency in peak height and pasting temperature. Treatments during tempering resulted in more significant effects as compared to applications during flour mixing. The dough rising during proofing resulted in enhancement from 137±3.21% (control) to maximum value (192.33±2.90%), when 600 IU of xylanases were applied to 1 kg of wheat grains during tempering. The bread sensory attributes also exhibited significant improvement in response to various doses of purified enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inferior surface quality is a significant problem faced by machinist. The purpose of this study is to present a surface texture analysis undertaken as part of machinability assessment of Super Austenitic Stainless Steel alloy-AL6XN. The surface texture analysis includes measuring the surface roughness and investigating the microstructural behaviour of the machined surfaces. Eight milling trials were conducted using combination of cutting parameters under wet machining. An optical profilometer (non-contact), was used to evaluate the surface texture at three positions. The surface texture was represented using the parameter, average surface roughness. Scanning Electron Microscope was utilised to inspect the machined surface microstructure and co relate with the surface roughness results. Results showed that maximum roughness values recorded at the three positions in the longitudinal direction (perpendicular to the machining grooves) were 1.21 μm (trial 1), 1.63 μm (trial 6) and 1.68 μm (trial 7) respectively whereas the roughness values were greatly reduced in the lateral direction. Also, results showed that the feed rate parameter significantly influences the roughness values compared to the other cutting parameters. The microstructure of the machined surfaces was distorted by the existence of cracks, deformed edges and bands and wear deposition due to machining process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study of tool wear and geometry response whenmachinability tests were applied under milling operations onthe Super Austenitic Stainless Steel alloy AL-6XN. Eight milling trials were executed under two cutting speeds, two feed rates, andtwo depths of cuts. Cutting edge profile measurements were performed to reveal response of cutting edge geometry to the cuttingparameters and wear. A scanning electron microscope (SEM) was used to inspect the cutting edges. Results showed the presenceof various types of wear such as adhesion wear and abrasion wear on the tool rake and flank faces. Adhesion wear represents theformation of the built-up edge, crater wear, and chipping, whereas abrasion wear represents flank wear.Thecommonly formed wearwas crater wear. Therefore, the optimum tool life among the executed cutting trails was identified according to minimum lengthand depth of the crater wear.The profile measurements showed the formation of new geometries for the worn cutting edges due toadhesion and abrasion wear and the cutting parameters.The formation of the built-up edge was observed on the rake face of thecutting tool. The microstructure of the built-up edge was investigated using SEM. The built-up edge was found to have the austeniteshear lamellar structure which is identical to the formed shear lamellae of the produced chip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biocompatible Ti, Nb and Mo alloy was fabricated in search of a novel biomaterial for bone regeneration. A series of Ti-based alloys were prepared from elemental powders via powder metallurgy technique. The effects of ball milling variables and the agglomerated particles on mechanical properties of the bulk and porous structures were investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.