163 resultados para forming limits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

V-sections were roll formed from two grades of steel, and the strain on the top and bottom of the strip near the edge was measured using electrical resistance strain gauges. The channels were bent to a radius of 2 and 15 mm along the centerline. The steel strips were of mild and dual phase steel of yield strength 367 MPa and 597 MPa respectively. The longitudinal bow was measured using a 3-dimensional scanning system. The strain measurements were analysed to determine bending and mid-surface strains at the edge during forming. The peak longitudinal edge strain increased with material yield strength for both profile radii. For the 15 mm radius, the bow was larger in the dual phase steel than in the mild steel. For the 2 mm profile radius, the bow was smaller compared with the 15 mm profile radius and it was similar for both steels. It was observed that the difference between the peak longitudinal edge strain and yield strength to Youngs modulus ratio of the material is an important factor in determining longitudinal bow.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To have fuel efficient vehicles with a lightweight structure, the use of High Strength Steels (HSS) and Advanced High Strength Steels (AHSS) in the body of automobiles is increasing. Roll forming is used widely to form AHSS materials. Roll forming is a continuous process in which a flat strip is shaped to the desired profile by passing through numerous sets of rolls. Formability and springback are two major concerns in the roll forming of AHSS materials. Previous studies have shown that the elastic modulus (Young's modulus) of AHSS materials can change when the material undergoes plastic deformation and the main goal of this study is to numerically investigate the effect of a change in elastic modulus during forming on springback in roll forming. Experimental loading-unloading tests have been performed to obtain the material properties of TRIP 700 steel and incorporate those in the material model used in the numerical simulation of the roll forming process. The finite element simulations were carried out using MSC-Marc and two different element types, a shell element and a solid-shell element, were investigated. The results show that the elastic modulus diminution due to plastic strain increases the springback angle by about 60% in the simple V-section roll forming analyzed in this study. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Civilian endurance has again become a significant issue in understanding the nature of the First World War, especially since so much emphasis has returned to questions of consent and commitment in making and sustaining the conflict. Fundamental to that enquiry is an acknowledgement of the reality and legitimacy of the sentiments that drove individuals and communities to support the war. By extension, this also implies a need to understand the limits of that commitment, and of the capacity to endure the strains of war. This chapter probes civilian endurance through an examination of Australian families’ experiences of war and separation. It argues that persistent anxiety over loved ones at the front consumed individuals’ emotional resources and, even among the most patriotic Australians, tested commitment to the war.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to develop a kinematic hardening effect graph (KHEG) which can be used to evaluate the effect of kinematic hardening on the model accuracy of numerical sheet metal forming simulations and this without the need of complex material characterisation. The virtual manufacturing process design and optimisation depends on the accuracy of the constitutive models used to represent material behaviour. Under reverse strain paths the Bauschinger effect phenomenon is modelled using kinematic hardening models. However, due to the complexity of the experimental testing required to characterise this phenomenon in this work the KHEG is presented as an indicator to evaluate the potential benefit of carrying out these tests. The tool is validated with the classic three point bending process and the U-channel width drawbead process. In the same way, the capability of the KHEG to identify effects in forming processes that do not include forming strain reversals is identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incremental sheet forming enables sheet metal to deform above a conventional strain-based forming limit. The mechanics reason has not been clearly explained yet. In this work, the stress-based forming limit was utilized for through-thickness necking analysis to explain this uncovered question. Stress-based forming limit which has path-independency shows that the stress states in top, middle and bottom surfaces did not exceed the forming limit curve at the same time and each layer has different stress state in terms of their deformation history to suppress necking. It has been found that it is important to consider the gradient stress profile following the deformation history for the proper forming limit analysis of incremental sheet forming. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Benchmark-3 is designed to predict strains, punch load and deformed profile after spring-back during single tool incremental sheet forming. AA 7075-O material has been selected. A corn shape is formed to 45 mm depth with an angle of 45º. Problem description, material properties, and simulation reports with experimental data are summarized.

Relevância:

20.00% 20.00%

Publicador: