148 resultados para autism spectrum disorders (ASD)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress has been implicated in the pathogenesis of diverse disease states, and may be a common pathogenic mechanism underlying many major psychiatric disorders, as the brain has comparatively greater vulnerability to oxidative damage. This review aims to examine the current evidence for the role of oxidative stress in psychiatric disorders, and its academic and clinical implications. A literature search was conducted using the Medline, Pubmed, PsycINFO, CINAHL PLUS, BIOSIS Previews, and Cochrane databases, with a time-frame extending to September 2007. The broadest data for oxidative stress mechanisms have been derived from studies conducted in schizophrenia, where evidence is available from different areas of oxidative research, including oxidative marker assays, psychopharmacology studies, and clinical trials of antioxidants. For bipolar disorder and depression, a solid foundation for oxidative stress hypotheses has been provided by biochemical, genetic, pharmacological, preclinical therapeutic studies and one clinical trial. Oxidative pathophysiology in anxiety disorders is strongly supported by animal models, and also by human biochemical data. Pilot studies have suggested efficacy of N-acetylcysteine in cocaine dependence, while early evidence is accumulating for oxidative mechanisms in autism and attention deficit hyperactivity disorder. In conclusion, multi-dimensional data support the role of oxidative stress in diverse psychiatric disorders. These data not only suggest that oxidative mechanisms may form unifying common pathogenic pathways in psychiatric disorders, but also introduce new targets for the development of therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cases of autism have frequently been reported in association with gastrointestinal problems. These observations have stimulated investigations into possible abnormalities of intestinal microbiota in autistic patients. The objectives of this paper were to review the possible involvement and mechanisms of gastrointestinal microbiota in autistic spectrum disorder and explain the possible role of gastrointestinal microbiota in the condition. This review addresses the possible involvement of bacteria, viruses and fungi, and their products in autism. Direct viral damage of neurons or disruption of normal neurodevelopment by immune elements such as cytokines, nitric oxide and bacterial products, including lipopolysaccharides, toxins and metabolites, have been suggested to contribute to autistic pathology. Numerous intestinal microbial abnormalities have been reported in individuals with autism. Research to date exploring possible gastrointestinal problems and infection in autism has been limited by small and heterogeneous samples, study design flaws and conflicting results. Furthermore, interventions designed to modify the intestinal microbial population of autistic patients are few and limited in their generalisation. In order to bring clarity to this field, high-quality and targeted investigations are needed to explore the role of gastrointestinal microbiology in autism. To this end, several promising avenues for future research are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the publication of Leo Kanner's seminal paper in 1943, there has been essentially no definitive light shed on the cause, prevention or cure of autism. It is our contention that the reason lies, at least in part, with the original psychiatric conceptualization of the condition and the subsequent acceptance of this framework by health professionals ever since. We suggest an urgent revision of autism as a disease state such that its operationalization in major diagnostic systems such as the Diagnostic and Statistical Manual of Mental Disorders and International Classification of Diseases recognizes the biological variables known to be associated with autism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, gut bacteria of children with autism were examined. The results provided new information and a compelling picture of the gut bacteria of children with autism and gastrointestinal symptomatology. The mechanisms that underlie gut dysfunction might involve factors like stress-induced changes in gut physiology associated with autism.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Oxidative stress, inflammation and heavy metals have been implicated in the aetiology of autistic disorder. N-acetyl cysteine has been shown to modulate these pathways, providing a rationale to trial N-acetyl cysteine for autistic disorder. There are now two published pilot studies suggesting efficacy, particularly in symptoms of irritability. This study aimed to explore if N-acetyl cysteine is a useful treatment for autistic disorder.

METHOD: This was a placebo-controlled, randomised clinical trial of 500 mg/day oral N-acetyl cysteine over 6 months, in addition to treatment as usual, in children with a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision diagnosis of autistic disorder. The study was conducted in Victoria, Australia. The primary outcome measures were the Social Responsiveness Scale, Children's Communication Checklist-Second Edition and the Repetitive Behavior Scale-Revised. Additionally, demographic data, the parent-completed Vineland Adaptive Behavior Scales, Social Communication Questionnaire and clinician-administered Autism Diagnostic Observation Schedule were completed.

RESULTS: A total of 102 children were randomised into the study, and 98 (79 male, 19 female; age range: 3.1-9.9 years) attended the baseline appointment with their parent/guardian, forming the Intention to Treat sample. There were no differences between N-acetyl cysteine and placebo-treated groups on any of the outcome measures for either primary or secondary endpoints. There was no significant difference in the number and severity of adverse events between groups.

CONCLUSION: This study failed to demonstrate any benefit of adjunctive N-acetyl cysteine in treating autistic disorder. While this may reflect a true null result, methodological issues particularly the lower dose utilised in this study may be confounders.