168 resultados para Wireless Networks


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cryptographic keys are necessary to secure communications among mesh clients in wireless mesh networks. Traditional key establishment schemes are implemented at higher layers, and the security of most such designs relies on the complexity of computational problems. Extracting cryptographic keys at the physical layer is a promising approach with information-theoretical security. But due to the nature of communications at the physical layer, none of the existing designs supports key establishment if communicating parties are out of each other's radio range, and all schemes are insecure against man-in-the-middle attacks. This paper presents a cross-layer key establishment scheme where the established key is determined by two partial keys: one extracted at the physical layer and the other generated at higher layers. The analysis shows that the proposed cross-layer key establishment scheme not only eliminates the aforementioned shortcomings of key establishment at each layer but also provides a flexible solution to the key generation rate problem. © 2014 Springer International Publishing Switzerland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the motivation of seamlessly extending wireless sensor networks to the external environment, service-oriented architecture comes up as a promising solution. However, as sensor nodes are failure prone, this consequently renders the whole wireless sensor network to seriously faulty. When a particular node is faulty, the service on it should be migrated into those substitute sensor nodes that are in a normal status. Currently, two kinds of approaches exist to identify the substitute sensor nodes: the most common approach is to prepare redundancy nodes, though the involved tasks such as maintaining redundancy nodes, i.e., relocating the new node, lead to an extra burden on the wireless sensor networks. More recently, other approaches without using redundancy nodes are emerging, and they merely select the substitute nodes in a sensor node's perspective i.e., migrating the service of faulty node to it's nearest sensor node, though usually neglecting the requirements of the application level. Even a few work consider the need of the application level, they perform at packets granularity and don't fit well at service granularity. In this paper, we aim to remove these limitations in the wireless sensor network with the service-oriented architecture. Instead of deploying redundancy nodes, the proposed mechanism replaces the faulty sensor node with consideration of the similarity on the application level, as well as on the sensor level. On the application level, we apply the Bloom Filter for its high efficiency and low space costs. While on the sensor level, we design an objective solution via the coefficient of a variation as an evaluation for choosing the substitute on the sensor level. © 2014 Springer Science+Business Media New York.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 The main objective of this thesis is to develop solutions for the existing research problems in wireless sensor networks that negatively influence their performances. To achieve that four main research gaps from collecting, aggregating and transferring data with considering different deployment methods of sensor nodes were addressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Location service provides location information of robots to sensors, to enable event reporting. Existing protocols apply partial flooding to trace robots, leading to poor scalability. We propose a novel scalable location service, which applies hierarchical rings to update robot location and guide routing toward it. Each mobile robot creates a set of hierarchical update rings of doubling radii. Whenever the robot leaves its k-th ring, it updates its new location to sensors along its newly defined k-th ring, and re-defines all smaller rings for future decisions. When a sensor needs to route to the mobile robot, it starts searching from its smallest ring and sends location query to the sensors along the ring. If the query fails, the search then extends to the next larger ring, until it intersects an existing update ring, from which the search can be directed towards reported center. The location of destination is updated whenever another more recent ring is intersected. Our scheme guarantees message delivery if robot remains connected to sensors during its move. The theoretical analysis and simulation results demonstrate better scalability than previous protocols for the similar goal. © 2014 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 The thesis proposed four novel algorithms of information discovery for Multidimensional Autonomous Wireless Sensor Networks (WSNs) that can significantly increase network lifetime and minimize query processing latency, resulting in quality of service improvements that are of immense benefit to Multidimensional Autonomous WSNs are deployed in complex environments (e.g., mission-critical applications).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many network applications, the nature of traffic is of burst type. Often, the transient response of network to such traffics is the result of a series of interdependant events whose occurrence prediction is not a trivial task. The previous efforts in IEEE 802.15.4 networks often followed top-down approaches to model those sequences of events, i.e., through making top-view models of the whole network, they tried to track the transient response of network to burst packet arrivals. The problem with such approaches was that they were unable to give station-level views of network response and were usually complex. In this paper, we propose a non-stationary analytical model for the IEEE 802.15.4 slotted CSMA/CA medium access control (MAC) protocol under burst traffic arrival assumption and without the optional acknowledgements. We develop a station-level stochastic time-domain method from which the network-level metrics are extracted. Our bottom-up approach makes finding station-level details such as delay, collision and failure distributions possible. Moreover, network-level metrics like the average packet loss or transmission success rate can be extracted from the model. Compared to the previous models, our model is proven to be of lower memory and computational complexity order and also supports contention window sizes of greater than one. We have carried out extensive and comparative simulations to show the high accuracy of our model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose an algorihm for conneced p-percent coverage probem in Wireless Sensor Networks(WSNs) to improve the over netork life time. In this work, we invstigae the p-pernt coverage problem(PCP) in WSNs which require % of n area should be monitored correctl and to find ou ny additional requirements of the connec p-percent coverge prom. We prose pDCDS algorith which is a learnin autmaton basd algorithm fr PCP pDCDS is a Degreconsained Connected Domining Se based algoithm whch detect the minimum numbe of des to monitor an area. The simulation results demonstrate hat pDCDS can remarkably improve the network lifetime.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous Wireless sensor networks(WSNs) have sensors that are usually deployed randomly to monitor one or more phenomena. They are attractive for information discovery in large-scale data rich environments and can add value to mission–critical applications such as battlefield surveillance and emergency response systems. However, in order to fully exploit these networks for such applications, energy efficient, load balanced and scalable solutions for information discovery are essential. Multi-dimensional autonomous WSNs are deployed in complex environments to sense and collect data relating to multiple attributes (multi-dimensional data). Such networks present unique challenges to data dissemination, data storage of in-network information discovery. In this paper, we propose a novel method for information discovery for multi-dimensional autonomous WSNs which sensors are deployed randomly that can significantly increase network lifetime and minimize query processing latency, resulting in quality of service (QoS) improvements that are of immense benefit to mission–critical applications. We present simulation results to show that the proposed approach to information discovery offers significant improvements on query resolution latency compared with current approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless mesh networks are widely applied in many fields such as industrial controlling, environmental monitoring, and military operations. Network coding is promising technology that can improve the performance of wireless mesh networks. In particular, network coding is suitable for wireless mesh networks as the fixed backbone of wireless mesh is usually unlimited energy. However, coding collision is a severe problem affecting network performance. To avoid this, routing should be effectively designed with an optimum combination of coding opportunity and coding validity. In this paper, we propose a Connected Dominating Set (CDS)-based and Flow-oriented Coding-aware Routing (CFCR) mechanism to actively increase potential coding opportunities. Our work provides two major contributions. First, it effectively deals with the coding collision problem of flows by introducing the information conformation process, which effectively decreases the failure rate of decoding. Secondly, our routing process considers the benefit of CDS and flow coding simultaneously. Through formalized analysis of the routing parameters, CFCR can choose optimized routing with reliable transmission and small cost. Our evaluation shows CFCR has a lower packet loss ratio and higher throughput than existing methods, such as Adaptive Control of Packet Overhead in XOR Network Coding (ACPO), or Distributed Coding-Aware Routing (DCAR).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The popularity of smartphones has led to an increasing demand for health apps. As a result, the healthcare industry is embracing mobile technology and the security of mHealth is essential in protecting patient’s user data and WBAN in a clinical setting. Breaches of security can potentially be life-threatening as someone with malicious intentions could misuse mHealth devices and user information. In this article, threats to security for mHealth networks are discussed in a layered approach addressing gaps in this emerging field of research. Suite B and Suite E, which are utilized in many security systems, including in mHealth applications, are also discussed. In this paper, the support for mHealth security will follow two approaches; protecting patient-centric systems and associated link technologies. Therefore this article is focused on the security provisioning of the communication path between the patient terminal (PT; e.g., sensors) and the monitoring devices (e.g., smartphone, data-collector).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Service oriented architecture has been proposed to support collaborations among distributed wireless sensor network (WSN) applications in an open dynamic environment. However, WSNs are resource constraint, and have limited computation abilities, limited communication bandwidth and especially limited energy. Fortunately, sensor nodes in WSNs are usually deployed redundantly, which brings the opportunity to adopt a sleep schedule for balanced energy consumption to extend the network lifetime. Due to miniaturization and energy efficiency, one sensor node can integrate several sense units and support a variety of services. Traditional sleep schedule considers only the constraints from the sensor nodes, can be categorized to a one-layer (i.e., node layer) issue. The service oriented WSNs should resolve the energy optimization issue considering the two-layer constraints, i.e., the sensor nodes layer and service layer. Then, the one-layer energy optimization scheme in previous work is not applicable for service oriented WSNs. Hence, in this paper we propose a sleep schedule with a service coverage guarantee in WSNs. Firstly, by considering the redundancy degree on both the service level and the node level, we can get an accurate redundancy degree of one sensor node. Then, we can adopt fuzzy logic to integrate the redundancy degree, reliability and energy to get a sleep factor. Based on the sleep factor, we furthermore propose the sleep mechanism. The case study and simulation evaluations illustrate the capability of our proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data aggregation in wireless sensor networks is employed to reduce the communication overhead and prolong the network lifetime. However, an adversary may compromise some sensor nodes, and use them to forge false values as the aggregation result. Previous secure data aggregation schemes have tackled this problem from different angles. The goal of those algorithms is to ensure that the Base Station (BS) does not accept any forged aggregation results. But none of them have tried to detect the nodes that inject into the network bogus aggregation results. Moreover, most of them usually have a communication overhead that is (at best) logarithmic per node. In this paper, we propose a secure and energy-efficient data aggregation scheme that can detect the malicious nodes with a constant per node communication overhead. In our solution, all aggregation results are signed with the private keys of the aggregators so that they cannot be altered by others. Nodes on each link additionally use their pairwise shared key for secure communications. Each node receives the aggregation results from its parent (sent by the parent of its parent) and its siblings (via its parent node), and verifies the aggregation result of the parent node. Theoretical analysis on energy consumption and communication overhead accords with our comparison based simulation study over random data aggregation trees.