137 resultados para Risk and performance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the relation between aggregate volatility risk and the cross-section of stock returns in Australia. We use a stock's sensitivity to innovations in the ASX200 implied volatility (VIX) as a proxy for aggregate volatility risk. Consistent with theoretical predictions, aggregate volatility risk is negatively related to the cross-section of stock returns only when market volatility is rising. The asymmetric volatility effect is persistent throughout the sample period and is robust after controlling for size, book-to-market, momentum, and liquidity issues. There is some evidence that aggregate volatility risk is a priced factor, especially in months with increasing market volatility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most animals conduct daily activities exclusively either during the day or at night. Here, hormones such as melatonin and corticosterone, greatly influence the synchronization or regulation of physiological and behavioral cycles needed for daily activity. How then do species that exhibit more flexible daily activity patterns, responses to ecological, environmental or life-history processes, regulate daily hormone profiles important to daily performance? This study examined the consequences of (1) nocturnal activity on diel profiles of melatonin and corticosterone and (2) the effects of experimentally increased acute melatonin levels on physiological and metabolic performance in the cane toad (Rhinella marinus). Unlike inactive captive toads that had a distinct nocturnal melatonin profile, nocturnally active toads sampled under field and captive conditions, exhibited decreased nocturnal melatonin profiles with no evidence for any phase shift. Nocturnal corticosterone levels were significantly higher in field active toads than captive toads. In toads with experimentally increased melatonin levels, plasma lactate and glucose responses following recovery post exercise were significantly different from control toads. However, exogenously increased melatonin did not affect resting metabolism in toads. These results suggest that toads could adjust daily hormone profiles to match nocturnal activity requirements, thereby avoiding performance costs induced by high nocturnal melatonin levels. The ability of toads to exhibit plasticity in daily hormone cycles, could have broad implications for how they and other animals utilize behavioral flexibility to optimize daily activities in response to natural and increasingly human mediated environmental variation.