142 resultados para Bone radiographic density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population.

Objective: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children.

Design:
Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7–10 y.

Results: Overweight children (n = 93) had greater values for bone variables (0.3–1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21–87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 ± 28% compared with 57 ± 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = −0.17 to −0.54; P < 0.0001).

Conclusions:
Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mouse dura mater, pia mater, and choroid plexus contain resident macrophages and dendritic cells (DCs). These cells participate in immune surveillance, phagocytosis of cellular debris, uptake of antigens from the surrounding cerebrospinal fluid and immune regulation in many pathologic processes. We used Cx3cr1 knock-in, CD11c-eYFP transgenic and bone marrow chimeric mice to characterize the phenotype, density and replenishment rate of monocyte-derived cells in the meninges and choroid plexus and to assess the role of the chemokine receptor CX3CR1 on their number and tissue distribution. Iba-1 major histocompatibility complex (MHC) Class II CD169 CD68 macrophages and CD11c putative DCs were identified in meningeal and choroid plexus whole mounts. Comparison of homozygous and heterozygous Cx3cr1 mice did not reveal CX3CR1-dependancy on density, distribution or phenotype of monocyte-derived cells. In turnover studies, wild type lethally irradiated mice were reconstituted with Cx3cr1/-positive bone marrow and were analyzed at 3 days, 1, 2, 4 and 8 weeks after transplantation. There was a rapid replenishment of CX3CR1-positive cells in the dura mater (at 4 weeks) and the choroid plexus was fully reconstituted by 8 weeks. These data provide the foundation for future studies on the role of resident macrophages and DCs in conditions such as meningitis, autoimmune inflammatory disease and in therapies involving irradiation and hematopoietic or stem cell transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While it is widely acknowledged that bones adapt to the site-specific prevalent loading environment, reasonable ways to estimate skeletal loads are not necessarily available. For long bone shafts, muscles acting to bend the bone may provide a more appropriate surrogate of the loading than muscles expected to cause compressive loads. Thus, the aim of this study was to investigate whether mid-thigh muscle cross-sectional area (CSA) was a better predictor of tibial mid-shaft bone strength than mid-tibia muscle CSA in middle aged and older men. 181 Caucasian men aged 50–79 years (mean±SD; 61±7 years) participated in this study. Mid-femoral and mid-tibial bone traits cortical area , density weighted polar moment of area and muscle CSA [cm²] were assessed with computed tomography. Tibial bone traits were positively associated with both the mid-femur (r=0.44 to 0.46, P<0.001) and the mid-tibia muscle CSA (r=0.35 to 0.37, P<0.001). Multivariate regression analysis, adjusting for age, weight, physical activity and femoral length, indicated that mid-femur muscle CSA predicted tibial mid-shaft bone strength indices better thn mid-tibia muscle CSA. In conclusion, the association between a given skeletal site and functionally adjacent muscles may provide a meaningful probe of the site-specific effect of loading on bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This 4-year cluster randomised controlled trial of 365 boys and 362 girls (mean age 8.1 ± 0.3 years) from grade 2 in 29 primary schools investigated the effects of a specialist-taught physical education (PE) program on bone strength and body composition. All children received 150 min/week of common practice (CP) PE from general classroom teachers but in 13 schools 100 min/week of CP PE was replaced by specialized-led PE (SPE) by teachers who emphasized more vigorous exercise/games combined with static and dynamic postural activities involving muscle strength. Outcome measures assessed in grades 2, 4, and 6 included: total body bone mineral content (BMC), lean mass (LM) and fat mass (FM) by DXA, and radius and tibia (4% and 66% sites) bone structure, volumetric density and strength, and muscle cross-sectional area (CSA) by pQCT. After 4-years, gains in total body BMC, FM and muscle CSA were similar between the groups in both sexes, but girls in the SPE group experienced a greater gain in total body LM [mean (95%CI), 1.0kg (0.2, 1.9)]. Compared to CP, girls in the SPE group also had greater gains in cortical area (CoA) and cortical thickness (CoTh) at the mid-tibia [CoA, 5.0% (0.2, 1.9); CoTh 7.5% (2.4, 12.6)] and mid-radius [CoA, 9.3% (3.5, 15.1); CoTh 14.4% (6.1, 22.7)], while SPE boys had a 5.2% (0.4, 10.0) greater gain in mid-tibia CoTh. These benefits were due to reduced endocortical expansion. There were no significant benefits of SPE on total bone area, cortical density or bone strength at the mid-shaft sites, nor any appreciable effects at the distal skeletal sites. This study indicates that a specialist-led school-based PE program improves cortical bone structure, due to reduced endocortical expansion. This finding challenges the notion that periosteal apposition is the predominant response of bone to loading during the pre- and early-pubertal period. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 My research focussed on the analysing the lipid profile during development. I further studied potential chemicals to modulate lipid abundaces. Furthermore, I explored the effects of SSRIs on bone development.