31 resultados para nematic liquid crystals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractive indices of two nematogens, 4-methoxy-benzylidene-4 prime -n-butylaniline (MBBA) and 4-n-pentyl-4 prime -cyanobiphenyl (5CB), were measured throughout their nematic ranges at pressures up to 2 kbar and temperatures up to 70 degree C in the first substance and up to 5 kbar and 145 degree C in the second. Measurements were made at lambda equals 5,890 A, using a sensitive interference fringe technique. Results are presented in the form of functions n//e(P, T) for the extraordinary index and n//o (P, T) for the ordinary index, obtained by least squares fits to the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of high pressure on molecular arrangment in liquid crystals were observed by optical measurements on two nematogens. It was possible to deduce how volume varies as a factor of temperature and pressure and how nematic order parameter changes under the influence of high pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Refractive indices have been measured throughout the nematic phase of 4-n-pentyl-4'cyanobiphenyl (5CB) and the smectic A and nematic phases of 4-n-octyl-4'-cyanobiphenyl (8CB). The Vuks and Neugebauer methods of calculating the order parameter are compared. Without knowledge of the molecular polarisabilities it is only possible to calculate a quantity proportional to the order parameter, and within this limitation it is found that the two methods give identical results. The order parameter is scaled using the extrapolation method suggested by Haller [14]. Using a suitable average of the refractive indices and the density data of Gannon and Faber [9], it is shown that the Lorentz-Lorenz relation is obeyed over a 2 % density range in 5CB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the force as a function of distance between two solids separated by a liquid crystal film give information on the structure of the film. We report such measurements for two molecularly smooth surfaces of mica separated by the nematic liquid crystal 4'-n-pentyl 4-cyanobiphenyl (5CB) in both the planar and homeotropic orientations at room temperature. The force is determined by measuring the deflection of a spring supporting one of the mica pieces, while an optical technique is used to measure the film thickness to an accuracy of ± (0.1-0.2) nm. The technique also allows the refractive indices of the nematic to be measured, and hence a determination of the average density and order parameter of the liquid crystal film as a function of its thickness. Three distinct forces were measured, each reflecting a type of ordering of the liquid crystal near the mica surfaces. The first one results from elastic déformation in the liquid crystal ; it was only observed in a twisted planar sample where the 5CB molecules are oriented in different directions at the two mica surfaces. The second, measured in both the planar and homeotropic orientations, is attributed to an enhanced order parameter near the surfaces. Both of these are monotonic repulsive forces measurable below 80 nm. Finally, there is a short-range force which oscillates as a function of thickness, up to about six molecular layers, between attraction and repulsion. This results from ordering of the molecules in layers adjacent to the smooth solid surface. It is observed in both the planar and homeotropic orientations, and also in isotropic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, successful methods have been established to retain the ordered nanostructures in polymer materials templated from hexagonal lyotropic liquid crystals, which potentially renders broad applications as biomedical and membrane materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of other organic solvents, many of which were not known to afford solvophobic self-assembly prior to this report. The LC behavior of the as-prepared GO sheets in organic solvents has enabled us to disperse and organize substantial amounts of aggregate-free single-walled carbon nanotubes (SWNTs, up to 10 wt %) without compromise in LC properties. The as-prepared LC GO-SWNT dispersions were employed to achieve self-assembled layer-by-layer multifunctional 3D hybrid architectures comprising SWNTs and GO with unrivalled superior mechanical properties (Young’s modulus in excess of 50 GPa and tensile strength of more than 500 MPa).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research study has developed new ways to control bulk properties of self-assembled microemulsions and lyotropic liquid crystals (LLCs) by manipulations of their corresponding precursor phase behaviour. Investigation into relating phase behaviour with the morphology, porosity, thermal stability, rheological property, and photoresponse of these assemblies has been carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe novel lyotropic liquid-crystalline (LLC) materials based on photoresponsive amphiphiles that exhibit rapid photoswitchable rheological properties of unprecedented magnitude between solidlike and liquidlike states. This was achieved through the synthesis of a novel azobenzene-containing surfactant (azo-surfactant) that actuates the transition between different LLC forms depending on illumination conditions. Initially, the azo-surfactant/water mixtures formed highly ordered and viscous LLC phases at 20-55 wt % water content. Spectroscopic, microscopic, and rheological analysis confirmed that UV irradiation induced the trans to cis isomerization of the azo-surfactant, leading to the disruption of the ordered LLC phases and a dramatic, rapid decrease in the viscosity and modulus resulting in a 3 orders of magnitude change from a solid (20,000 Pa) to a liquid (50 Pa) at rate of 13,500 Pa/s. Subsequent exposure to visible light reverses the transition, returning the viscosity essentially to its initial state. Such large, rapid, and reversible changes in rheological properties within this LLC system may open a door to new applications for photorheological fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a facile method to prepare thermally stable and mechanically robust crosslinked lyotropic liquid crystals (LLCs) through incorporation of a polymerizable amphiphile into a binary LLC system comprising commercially available surfactant Brij 97 and water. Thermal stability and mechanical properties of the polymerized LLCs were significantly enhanced after polymerization of the incorporated polymerizable surfactant. The effect of incorporating a polymerizable amphiphile on the phase behavior of the LLC system was studied in detail. In situ photo-rheology was used to monitor the change in the mechanical properties of the LLCs, namely the storage modulus, loss modulus, and viscosity, upon polymerization. The retention of the LLC nanostructures was evaluated by small angle X-ray scattering (SAXS). The ability to control the thermal stability and mechanical strength of LLCs simply by adding a polymerizable amphiphile, without tedious organic synthesis or harsh polymerization conditions, could prove highly advantageous in the preparation of robust nanomaterials with well-defined periodic structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent discovery of liquid crystalline (LC) behavior of graphene oxide (GO) dispersions in various organic, and aqueous media brings added control to the assembly of larger structures using the chemical process approach.[1-3] The LC state can be used to direct the ordered assembly of nanocomponents in macroscopic structures via simple methods like wet-spinning. [3] Here, we developed a scaleable fabrication route to produce graphene fibers via a facile continuoes wetspinning methode. We develop solid understanding in the required criteria to correlate processability with LC behavior, aspect ratio and the dispersion concentration to provide a viable platform for spinning of LC GO. We demonstrate a striking result that highlits the importance of GO sheet size and polydispersity in generating wetspinnable LC GO dispersions from very low spinning dope concentrations (as low as 0.075 wt. %). The new knowledge gained through rheological investigations provides a sound explanation as to why continuous spinning of binder-free GO fibers is enabled by the LC behavior at this very low concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was focused on the development of nanostructured polymers for CO2 capture and energy storage applications, using polymerizable lyotropic liquid crystal. A combination of polarized optical microscopy, differential scanning calorimetry and Small-angle x-ray scattering has been used to characterize and understand the structure retention of these systems during photo-polymerization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cross-linked poly(ethylene glycol) diacrylate (PEGDA) membranes were prepared by polymerization in periodic nanostructured lyotropic liquid crystals (LLC) hexagonal phases under UV light. A series of membranes were prepared under different purification treatment conditions. Polarized light microscope was employed to determine the LLC phase texture of LLC system before and after polymerization. It is found that the LLC hexagonal structure retained to some degree after polymerization. The interior structures of final membranes were investigated with scanning electron microscope (SEM). The results suggested that purification process affect the structure retention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retaining hexagonal lyotropic liquid crystal (LLC) structures in polymers after surfactant removal and drying is particularly challenging, as the surface tension existing during the drying processes tends to change the morphology. In this study, cross-linked poly(ethylene glycol) diacrylate (PEGDA) hydrogels were prepared in LLC hexagonal phases formed from a dodecyltrimethylammonium bromide (DTAB)/water system. The retention of the hexagonal LLC structures was examined by controlling the surface tension. Polarized light microscopy, X-ray diffraction and small angle X-ray scattering results indicate that the hexagonal LLC structure was successfully formed before polymerization and well retained after polymerization and after surfactant removal when the surface tension forces remained neutral. Controlling the surface tension during the drying process can retain the nanostructures templated from lyotropic liquid crystals which will result in the formation of materials with desired nanostructures.