41 resultados para multiplex reverse transcription-polymerase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the discovery of microRNAs (miRNAs), different approaches have been developed to label, amplify and quantify miRNAs. The TaqMan(®) technology, provided by Applied Biosystems (ABIs), uses a stem-loop reverse transcription primer system to reverse transcribe the RNA and amplify the cDNA. This method is widely used to identify global differences between the expression of 100s of miRNAs across comparative samples. This technique also allows the quantification of the expression of targeted miRNAs to validate observations determined by whole-genome screening or to analyze few specific miRNAs on a large number of samples. Here, we describe the validation of a method published by ABIs on their web site allowing to reverse transcribe and pre-amplify multiple miRNAs and snoRNAs simultaneously. The validation of this protocol was performed on human muscle and plasma samples. Fast and cost efficient, this method achieves an easy and convenient way to screen a relatively large number of miRNAs in parallel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

tRNA(3Lys) is a primer for reverse transcription in human immunodeficiency virus type 1 (HIV-1), and the anticodon of tRNA(3Lys) has been implicated in playing a role in both its placement onto the HIV-1 genome and its interaction with HIV-1 reverse transcriptase (RT). In this work, the anticodon in a tRNA(3Lys) gene was changed from UUU to CUA (tRNA(3Lys)Su+) or, in addition, G-73 was altered to A (tRNA(3Lys)Su+G73A). COS-7 cells were transfected with either wild-type or mutant tRNA(3Lys) genes, and both the wild-type and mutant tRNA(3Lys) produced were purified by using immobilized tRNA-specific hybridization probes. Each mutant tRNA(3Lys) was tested for its ability to prime reverse transcription in vitro, either alone or in competition with wild-type tRNA(3Lys). Short RT extensions of wild-type and mutant tRNALys could be distinguished from each other by their different mobilities in one-dimensional single-stranded conformation polymorphism polyacrylamide gel electrophoresis. These reverse transcription products show that heat-annealed tRNA(3Lys)Su+ has the same ability as heat-annealed wild-type tRNA(3Lys) to prime RT and competes equally well with wild-type tRNA(3Lys) for priming RT. tRNA(3Lys)Su+G73A has 60% of the wild-type ability to prime RT but competes poorly with wild-type tRNA(3Lys) for priming RT. However, the priming abilities of wild-type and mutant tRNA(3) are quite different when in vivo-placed tRNA is examined. HIV-1 produced in COS cells transfected with a plasmid containing both the HIV-1 proviral DNA and DNA coding for tRNA(3Lys)Su+ contains both endogenous, cellular wild-type tRNA(3Lys) and mutant tRNA(3Lys). When total viral RNA is used as the source of primer tRNA placed onto the genomic RNA in vivo, only wild-type tRNA(3Lys) is used as a primer. If the total viral RNA is first heated and exposed to hybridizing conditions, then both the wild-type and mutant tRNA(3Lys) act as primers for RT. These results indicate that the tRNA(3Lys)Su+ packaged into the virions is unable to act as a primer for RT, and a model is proposed to explain the disparate results between heat-annealed and in vivo-placed primer tRNA.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 (HIV-1) Tat protein enhances reverse transcription, but it is not known whether Tat acts directly on the reverse transcription complex or through indirect mechanisms. Since processing of Tat by HIV protease (PR) might mask its presence and, at least in part, explain this lack of data, we asked whether Tat can be cleaved by PR. We used a rabbit reticulocyte lysate (RRL) system to make Tat and PR. HIV-1 PR is expressed as a Gag-Pol fusion protein, and a PR-inactivated Gag-Pol is also expressed as a control. We showed that Tat is specifically cleaved in the presence of PR, producing a protein of approximately 5 kDa. This result suggested that the cleavage site was located in or near the Tat basic domain (amino acids 49 to 57), which we have previously shown to be important in reverse transcription. We created a panel of alanine-scanning mutations from amino acids 45 to 54 in Tat and evaluated functional parameters, including transactivation, reverse transcription, and cleavage by HIV-1 PR. We showed that amino acids 49 to 52 (RKKR) are absolutely required for Tat function in reverse transcription, that mutation of this domain blocks cleavage by HIV-1 PR, and that other pairwise mutations in this region modulate reverse transcription and proteolysis in strikingly similar degrees. Mutation of Tat Y47G48 to AA also down-regulated Tat-stimulated reverse transcription but had little effect on transactivation or proteolysis by HIV PR, suggesting that Y47 is critical for reverse transcription. We altered the tat gene of the laboratory strain NL4-3 to Y47D and Y47N so that overlapping reading frames were not affected and showed that Y47D greatly diminished virus replication and conveyed a reverse transcription defect. We hypothesize that a novel, cleaved form of Tat is present in the virion and that it requires Y47 for its role in support of efficient reverse transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dimerization initiation site (DIS) stem-loop within the HIV-1 RNA genome is vital for the production of infectious virions in T-cell lines but not in primary cells. In comparison to peripheral blood mononuclear cells (PBMCs), which can support the replication of both wild type and HIV-1 DIS RNA mutants, we have found that DIS RNA mutants are up to 100 000-fold less infectious than wild-type HIV-1 in T-cell lines. We have also found that the cell-type-dependent replication of HIV-1 DIS RNA mutants is largely producer cell-dependent, with mutants displaying a greater defect in viral cDNA synthesis when viruses were not derived from PBMCs. While many examples exist of host–pathogen interplays that are mediated via proteins, analogous examples which rely on nucleic acid triggers are limited. Our data provide evidence to illustrate that primary T-lymphocytes rescue, in part, the replication of HIV-1 DIS RNA mutants through mediating the reverse transcription process in a cell-type-dependent manner. Our data also suggest the presence of a host cell factor that acts within the virus producer cells. In addition to providing an example of an RNA-mediated cell-type-dependent block to viral replication, our data also provides evidence which help to resolve the dilemma of how HIV-1 genomes with mismatched DIS sequences can recombine to generate chimeric viral RNA genomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of resistant viruses to any of the anti-HIV-1 compounds used in the current therapies against AIDS underlies the urge for the development of new drug targets and/or new drugs acting through novel mechanisms. While all anti-HIV-1 nucleoside analogues in clinical use and in clinical trials rely on ribose modifications for activity, we designed nucleosides with a natural deoxyribose moiety and modifications of position 8 of the adenine base. Such modifications might induce a steric clash with helix αH in the thumb domain of the p66 subunit of HIV-1 RT at a distance from the catalytic site, causing delayed chain termination. Eleven new 2′-deoxyadenosine analogues modified on position 8 of the purine base were synthesized and tested in vitro and in cell-based assays. In this paper we demonstrate for the first time that chemical modifications on position 8 of 2′-deoxyadenosine induce delayed chain termination in vitro, and also inhibit DNA synthesis when incorporated in a DNA template strand. Furthermore, one of them had moderate anti-HIV-1 activity in cell-culture. Our results constitute a proof of concept indicating that modification on the base moiety of nucleosides can induce delayed polymerization arrest and inhibit HIV-1 replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complementary DNA (cDNA) encoding Bufo marinus (toad) preproatrial natriuretic peptide (preproANP) was isolated by reverse-transcription polymerase chain reaction. Sequence analysis of toad preproANP cDNA revealed an open reading frame of 150 amino acid residues, which shared 72% and 66% identity with Rana catesbeiana and Xenopus laevis preproANP, respectively. The deduced amino acid sequence of toad ANP that corresponded to ANP 1–24 of R. catesbeiana and Rana ridibunda was identical, but it differed by four residues from that of X. laevis. ANP mRNA transcripts were also shown to be expressed in the toad kidney. Subsequently, the effect of frog ANP (1–24) on renal function in toad was examined using a perfused kidney preparation. The arterial infusion of frog ANP caused a dose-dependent decrease in the arterial perfusion pressure that was associated with an increase in the glomerular filtration rate (GFR) and a renal natriuresis and diuresis. The renal natriuresis and diuresis resulted predominantly from an increased GFR rather than from direct tubular effects. This study demonstrates that ANP can regulate renal function, which suggests it may be involved in overall fluid volume regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity. Methods: Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump α1, α2, α3, β1, β2 and β3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase). Results: ETM demonstrated lower α1, α3, β2 and β3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P < 0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P < 0.03). RAM demonstrated a 230% and 364% higher α3 and b3 mRNA expression than RAF, respectively (P < 0.05), but no significant sex differences were found for α1, α2, β1 or β2 mRNA, [3H]-ouabain binding  or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r = 0.31, P < 0.02) and between incremental exercise V O2(peak) and both   [3H]-ouabain binding (r = 0.33, P < 0.01) and 3-O-MFPase activity (r = 0.28, P < 0.03). Conclusions: Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) plays a role in the pathogenesis of chronic hepatitis B (CHB) and chronic hepatitis C (CHC). The difference in the cytokine responses between hepatitis B virus (HBV) and hepatitis C virus (HCV) infections may have implications in the pathogenesis of these diseases. We performed a comparative study to examine the possible differences in the TNF-TNF receptor (TNFR) response between CHB and CHC. We studied the cytokine levels of 38 patients with CHB, 40 patients with CHC and 9 patients with dual hepatitis B and C, and compared them with the baseline levels of 12 healthy controls. The plasma levels of TNF-, interferon-, interleukin (IL)-2, IL-4, IL-10 and soluble TNFR-1 and 2 (sTNFR-1 and 2) were quantified by enzyme-linked immunosorbent assays. The expression of TNFR-1 and 2 in liver tissues was examined in 30 cases of CHB and 15 cases of CHC by semiquantitative reverse transcription polymerase chain reaction. The results showed that sTNFR-1 levels correlated with liver inflammation in all patients, whereas this correlation was not found with sTNFR-2 or other cytokines. Liver inflammation indicators were higher in HCV RNA+ than in HCV RNA– CHC. Most significantly, sTNFR-1 levels correlated with liver inflammation in CHB, but not in CHC. However, the expression of TNFR-1 and 2 in liver was similar between CHB and CHC. These findings suggest that the TNFR signal transduction pathway is modulated differently in HBV and HCV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The very virulent (vv) pathotype of infectious bursal disease virus (IBDV) has spread rapidly throughout Europe, Asia, and the Middle East. Although Australia is currently unaffected, there remains the potential for incursion of an exotic isolate. The aim of this study was to identify putative virulence determinants of IBDV to facilitate the development of improved diagnostic assays for detection and characterisation of vvIBDV isolates. Sequencing of Indonesian vvIBDV Tasik94 revealed a unique substitution [ A�¨S222] in the hypervariable region (HVR) of viral protein (VP) VP2, which did not appear to impinge on virulence or antigenicity. Phylogenetic analyses indicated that Tasik94 was closely related to Asian and European vvIBDV strains. Extensive alignment of deduced protein sequences across the HVR of VP2 identified residuesI242 I256 and I294 as putative markers of the vv phcnotype. Comparison of the pathology induced by mildly-virulent Australian IBDV 002/73 and Indonesian vvIBDV Tasik94, revealed that histological lesions in the spleen, thymus and bone marrow were restricted to Tasik94-infected birds, suggesting the enhanced pathogenicity of vvIBDV might be attributed to replication in non-bursal lymphoid organs. The biological significance of the VP2 HVR in virulence was assessed using recombinant viruses generated by reverse genetics. Both genomic segments of Australian IBDV 002/73, and recombinant segment A constructs in which the HVR of 002/73 was replaced with the corresponding region of either tissue culture-adapted virus or vvIBDV (Tasik94), were cloned behind T7 RNA polymerase promoter sequences. In vitro transcription/translation of each construct resulted in expression of viral proteins. Co-transfection of synthetic RNA transcripts initiated replication of both tissue culture-adapted parental and recombinant viruses, however attempts to rescue non-adapted viruses in specific-pathogen-free (SPF) chickens were unsuccessful. Nucleotide sequence variation in the HVR of VP2 was exploited for the development of a new diagnostic assay to rapidly detect exotic IBDV isolates, including vvIBDV, using reverse transcription polymerase chain reaction (RT-PCR) amplification and Bmrl restriction enzyme digestion. The assay was capable of differentiating between endemic and exotic IBDV in 96% of 105 isolates sequenced to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: The aim of this study was to evaluate a number of foot-and-mouth disease (FMD) test methods for use in red deer. Ten animals were intranasally inoculated with the FMD virus (FMDV) O UKG 11/2001, monitored for clinical signs, and samples taken regularly (blood, serum, oral swabs, nasal swabs, probang samples and lesion swabs, if present) over a 4-week period. Only one animal, deer 1103, developed clinical signs (lesions under the tongue and at the coronary band of the right hind hoof). It tested positive by 3D and IRES real-time reverse transcription polymerase chain reaction (rRT-PCR) in various swabs, lesion materials and serum. In a non-structural protein (NSP) in-house ELISA (NSP-ELISA-IH), one commercial ELISA (NSP-ELISA-PR) and a commercial antibody NSP pen side test, only deer 1103 showed positive results from day post-inoculation (dpi) 14 onwards. Two other NSP-ELISAs detected anti-NSP serum antibodies with lower sensitivity. It also showed rising antibody levels in the virus neutralization test (VNT), the in-house SPO-ELISA-IH and the commercial SPO-ELISA-PR at dpi 9, and in another two commercial SPO-ELISAs at dpi 12 (SPO-ELISA-IV) and dpi 19 (SPO-ELISA-IZ), respectively. Six of the red deer that had been rRT-PCR and antibody negative were re-inoculated intramuscularly with the same O-serotype FMDV at dpi 14. None of these animals became rRT-PCR or NSP-ELISA positive, but all six animals became positive in the VNT, the in-house SPO-ELISA-IH and the commercial SPO-ELISA-PR. Two other commercial SPO-ELISAs were less sensitive or failed to detect animals as positive. The rRT-PCRs and the four most sensitive commercial ELISAs that had been used for the experimentally inoculated deer were further evaluated for diagnostic specificity (DSP) using 950 serum samples and 200 nasal swabs from non-infected animals. DSPs were 100% for the rRT-PCRs and between 99.8 and 100% for the ELISAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reverse transcription of the HIV RNA genome is thought to occur in the host cell cytoplasm after viral adsorption. However, viral DNA has been isolated in cell-free virus particles. We have quantitated by polymerase chain reaction (PCR) amplification the amount of viral DNA in virions as compared to RNA. Virus produced by proviral DNA transfections of cos-7 cells or by chronically-infected H9 cells; neither of which express the cell surface CD4 receptor, contained at least 1000 times more viral RNA than DNA. In contrast, only 60 times more RNA than DNA was present in virus particles produced by transfection of Jurkat cells, which were CD4-positive and thus potentially susceptible to superinfection. Protease-defective virus, carrying only the precursor of reverse transcriptase (RT) p160gag-pol, contained virtually no detectable DNA. These results indicate that only mature RT (p66/p51) and not its precursor (p160gag-pol) is responsible for the presence of viral DNA in HIV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium/proton exchangers (NHE) are transmembrane proteins that facilitate the exchange of a Na+ ion for a H+ ion across cellular membranes. The NHE are present in the gills of fishes and are believed to function in acid-base regulation by driving the extrusion of protons across the branchial epithelium in exchange for Na+ in the water. In this study, we have used reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the presence of a branchial NHE in the gills of the Atlantic hagfish, Myxine glutinosa. The subsequent partial cDNA sequence shares homology with other vertebrate and invertebrate NHE isoforms. In addition, using semi-quantitative, multiplex RT-PCR we demonstrate that mRNA expression of hagfish gill NHE is upregulated following an induced metabolic acidosis. Expression was increased to 4.4 times basal levels at 2-h post-infusion and had decreased to 1.6 times basal by 6 h. Expression had returned to basal levels by 24-h post-infusion. The inference from this study is that a gill NHE which is potentially important in acid-base regulation has been present in the vertebrate lineage since before the divergence of the hagfishes from the main vertebrate line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to localize and characterize natriuretic peptide binding sites in the urinary bladder of Bufo marinus and to then examine the effect of natriuretic peptides on the bladder vascular tone and water reabsorption in isolated perfused bladder preparations. Specific 125I-rat atrial natriuretic peptide (125I-rANP) binding sites were present on blood vessels, muscle, and epithelium. In tissue sections and/or isolated membranes, the binding was completely displaced by frog ANP, rat ANP, and porcine C-type natriuretic peptide (CNP; membranes only). However, a reduction in binding was observed after incubation with 125I-rANP and 1 μM of the natriuretic peptide receptor-C (NPR-C) ligand C-ANF, but residual binding remained suggesting the presence of two distinct binding sites. Electrophoresis of bladder membranes cross-linked to 125I-rANP identified two bands at approximately 70 and 140 kDa that correspond to the monomeric mass of NPR-C and the guanylate cyclase receptors, respectively. Furthermore, the presence of natriuretic peptide receptor-A and NPR-C mRNA in the bladder was demonstrated with reverse transcription–polymerase chain reaction. In addition, rat ANP, frog ANP, and porcine CNP stimulated a significant increase in cGMP generation in bladder membrane preparations, which indicated the presence of guanylate cyclase-linked receptors. In perfused bladder preparations, arginine vasotocin increased perfusion pressure and water permeability. The infusion of frog ANP or porcine CNP failed to alter perfusion pressure or water reabsorption in the presence or absence of arginine vasotocin. This study identified a well-developed natriuretic peptide receptor system in the urinary bladder of B. marinus but the function of the receptors remains unclear.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biochemical and molecular processes that maintain the stem cell pool, and govern the proliferation and differentiation of haemopoietic stem/progenitor cells (HSPCs) have been widely investigated but are incompletely understood. The purpose of this study was to identify and characterise novel genes that may play a part in regulating the mechanisms that control the proliferation, differentiation and self-renewal of human HSPCs. Reverse transcription differential display polymerase chain reaction (dd-PCR) was used to identify differences in gene expression between a HSPC population defined by expression of the CD34 phenotype, and the more mature CD34 depleted populations. A total of 6 differentially expressed complementary deoxyribonucleic acid (cDNA) sequences were identified. Four of these transcripts were homologous to well characterised genes, while two (band 1 and band 20) were homologous to unknown and uncharacterised partial gene sequences on the GenBank database and were thus chosen for further investigation. The partial cDNA sequences for band 1 and band 20 were designated ORP-3 and MERP-1 (respectively) due to homologies with other well-characterised gene families. Differential expression of the ORP-3 and MERP-1 genes was confirmed using Taqman™ real-time polymerase chain reaction (PCR) with 3 - 4-fold and 4-10 -fold higher levels in the CD34+ fractions of haemopoietic cells compared to CD34- populations respectively. Additionally, expression of both these genes was down regulated with proliferation and differentiation of CD34+ cells further confirming higher expression in a less differentiated subset of haemopoietic cells. The full coding sequences of ORP-3 and MERP-1 were elucidated using bioinformatics, rapid amplification of cDNA ends (RACE) and PCR amplification. The MERP-1 cDNA is 2600 nucleotides (nt) long, and localizes by bioinformatics to chromosome 7.. It consists of three exons and 2 introns spanning an entire length of 31.4 kilobases (kb). The MERP-1 open reading frame (ORF) codes for a putative 344 amino acid (aa) type II transmembrane protein with an extracellular C-terminal ependymin like-domain and an intracellular N-terminal sequence with significant homology to the cytoplasmic domains of members of the protocadherin family of transmembrane glycoproteins. Ependymins and protocadherins are well-characterised calcium-dependant cell adhesion glycoproteins. Although the function of MERP-1 remains to be elucidated, it is possible that MERP-1 like its homologues plays a role in calcium dependent cell adhesion. Differential expression of the MERP-1 gene in haemopoietic cells suggests a role in haemopoietic stem cell proliferation and differentiation, however, its broad tissue distribution implies that it may also play a role in many cell types. Characterization of the MERP-1 protein is required to elucidate these possible roles. The ORP-3 cDNA is 6631nt long, and localizes by bioinformatics to chromosome 7pl5-p21. It consists of 23 exons and 22 introns spanning an entire length of 183.5kb. The ORP-3 ORF codes for a putative 887aa protein which displays the consensus sequence for a highly conserved oxysterol-binding domain. Other well-characterised proteins expressing these domains have been demonstrated to bind oxysterols (OS) in a dose dependant fashion. OS are hydroxylated derivatives of cholesterol Their biological activities include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, including haemopoietic cells. Differential expression of the ORP-3 gene in haemopoietic cells suggests a possible role in the transduction of OS effects on haemopoietic cells, however, its broad tissue distribution implies that it may also play a role in many cell types. Further investigation of ORP-3 gene expression demonstrates a significant correlation with CD34+ sample purity, and 2-fold higher expression in a population of haemopoietic cells defined by the CD34+38- phenotype compared to more mature CD34+38+ cells. This finding, taken together with the previous observation of down-regulation of ORP-3 expression with proliferation and differentiation of CD34+ cells, indicates that ORP-3 expression may be higher in a less differentiated subset of cells with a higher proliferative capacity. This hypothesis is supported by the observation that expression of the ORP-3 gene is approximately 2-fold lower in differentiated HL60 promyelocytic cells compared to control, undifferentiated cells. ORP-3 expression in HL60 cells during normal culture conditions was also found to vary with expression positively correlated with cell number. This indicates a possible cell cycle effect on ORP-3 gene expression with levels highest when cell density, and therefore the percentage of cells in G(0)/G(1) phase of the cell cycle is highest. This observation also correlates with the observation of higher ORP-3 expression in CD34+38-cells, and in CD34+ and HL60 cells undergoing OS induced and camptothecin induced apoptosis that is preceded by cell cycle arrest at G(0)/G(1). Expression of the ORP-3 gene in CD34+ HSPCs from UCB was significantly decreased to approximately half the levels observed in control cells after 24 hours incubation in transforming growth factor beta-1 (TGFâl). As ≥90% of these cells are stimulated into cell cycle entry by TGFâl, this observation further supports the hypothesis that ORP-3 expression is highest when cells reside in the G(0)/G(1) phase of the cell cycle. Data obtained from investigation of ORP-3 gene expression in synchronised HL60 cells however does not support nor disprove this hypothesis. Culture of CD34+ enriched HSPCs and HL60 cells with 25-OHC significantly increased ORP-3 gene expression to approximately 1.5 times control levels. However, as 25-OHC treatment also increased the percentage of apoptotic cells in these experiments, it is not valid to make any conclusions regarding the regulation of ORP-3 gene expression by OS. Indeed, the observation that camptothecin induced apoptosis also increased ORP-3 gene expression in HL60 cells raises the possibility that up-regulation of ORP-3 gene expression is also associated with apoptosis, Taken together, expression of the ORP-3 gene appears to be regulated by differentiation and apoptosis of haemopoietic progenitors, and may also be positively associated with proliferative and G(0)/G(1) cell cycle status indicating a possible role in all of these processes. Given the important regulatory role of apoptosis in haemopoiesis and differential expression of the ORP-3 gene in haemopoietic progenitors, final investigations were conducted to examine the effects OS on human HSPCs. Granulocyte/macrophage colony forming units (CFU-GM) generated from human bone marrow (ABM) and umbilical cord blood (UCB) were grown in the presence of varying concentrations of three different OS - 7keto-cholesterol (7K-C), 7beta-hydroxycholesterol (7p-OHC) and 25-hydroxycholesterol (25-OHC). Similarly, the effect of OS on HL60 and CD34+ cells was investigated using annexin-V staining and flow cytometry to measure apoptosis. Reduction of nitroblue tetrazolium (NBT) was used to assess differentiative status of HL60 cells. CFU-GM from ABM and HL60 growth was inhibited by all three OS tested, with 25-OHC being the most potent. 25-OHC inhibited ≥50% of bone marrow CFU-GM and ≥95% of HL60 cell growth at a level of 1 ug/ml. Compared to UCB, CFU-GM derived from ABM were more sensitive to the effects of all OS tested. Only 25-OHC and 7(5-OHC significantly inhibited growth of UCB derived CFU-GM. OS treatment increased the number of annexin-V CD34+ cells and NBT positive HL60 cells indicating that OS inhibition of CFU-GM and HL60 cell growth can be attributed to induction of apoptosis and differentiation. From these studies, it can be concluded that dd-PCR is an excellent tool for the discovery of novel genes expressed in human HSPCs. Characterisation of the proteins encoded by the novel genes ORP-3 and MERP-1 may reveal a regulatory role for these genes in haemopoiesis. Finally, investigations into the effects of OS on haemopoietic progenitor cells has revealed that OS are a new class of inhibitors of HSPC proliferation of potential relevance in vivo and in vitro.