70 resultados para YAMADA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular aluminum materials with relative densities of 0.1"-'0.25 were fabricated by the sintering method and effects of the density on mechanical properties of the cellular aluminum were investigated by compressive tests. The cellular aluminum exhibited a plateau region with a nearly constant flow stress. The stress in the plateau region increased with increasing relative density, on the other hand, the densification strain decreased with increasing relative density. Observation of the deformed cells revealed that the cell walls were bent. Besides, the stress in the plateau region was proportional to 1.9 power of the density. These suggest that plastic collapse is dominated by bending of the cell walls for the cellular aluminum produced by the sintering method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical properties of porous magnesium with the porosity of 35–55% and the pore size of about 70–400 μm are investigated by compressive tests focusing on the effects of the porosity and pore size on the Young's modulus and strength. Results indicated that the Young's modulus and peak stress increase with decreasing porosity and pore size. The mechanical properties of the porous magnesium were in a range of those of cancellous bone. Therefore, it is suggested that the porous magnesium is one of promising scaffold materials for hard tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Degeneration of the weight bearing bones of the ageing population often requires the inception of metallic biomaterials. Research in this area is receiving increased attention globally. However, most of today's artificial bone materials are dense and suffer from problems of adverse reaction, biomechanical mismatch and lack of appropriate space for the regeneration of new bone tissues. In the present study, novel ZrTi alloy foams with a porous structure and mechanical properties that are very close to those of bone were fabricated. These ZrTi alloy foams are biocompatible, and display a porous structure permitting the ingrowth of new bone tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone injuries and failures often require the inception of implant biomaterial. Research in this area has received increasing attention recently. In particular, porous metals are attractive due to its unique physical, mechanical, and new bone tissue ingrowth properties. In the present study, TiZr alloy powders were prepared using mechanical alloying. Novel TiZr alloy foams with relative densities of approximately 0.3 were fabricated by a powder metallurgical process. The TiZr alloy foams displayed an interconnected porous structure resembling bone and the pore size ranged from 200 to 500 μm. The compressive plateau stress and the Young’s modulus of the TiZr foam were 78.4 MPa and 15.3 GPa, respectively. Both the porous structure and the mechanical properties of the TiZr foam were very close to those of natural bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium foams fabricated by a new powder metallurgical process have bimodal pore distribution architecture (i.e., macropores and micropores), mimicking natural bone. The mechanical properties of the titanium foam with low relative densities of approximately 0.20-0.30 are close to those of human cancellous bone. Also, mechanical properties of the titanium foams with high relative densities of approximately 0.50-0.65 are close to those of human cortical bone. Furthermore, titanium foams exhibit good ability to form a bonelike apatite layer throughout the foams after pretreatment with a simple thermochemical process and then immersion in a simulated body fluid. The present study illustrates the feasibility of using the titanium foams as implant materials in bone tissue engineering applications, highlighting their excellent biomechanical properties and bioactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new powder manufacturing process for Ti and Mg metallic foams designs porosity, pore size and morphology. These open-cellular foams (pores: 200–500 μm) have exceptional characteristics (e.g., Ti foam porosity 78%, compressive strength 35 MPa, Young's modulus 5.3 GPa). Anticipated applications include biocompatible implant materials.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superplastic behaviour of Mg-alloy AZ31 was investigated to clarify the possibility of its use for superplastic forming (SPF) and to accurately evaluate material characteristics under a biaxial stress by utilizing a multi-dome test. The material characteristics were evaluated under three different superplastic temperatures , 643, 673, and 703 K in order to determine the most suitable superplastic temperature. Finite Element Method (FEM) simulation of rectangular pan forming was carried out to predict the formability of the material into a complex shape. The superplastic material properties are used for the simulation of a rectangular pan. Finally, the simulation results are compared with the experimental results to determine the accuracy of the superplastic material characteristics. The experimental results revealed that the m values are greater than 0.3 under the three superplastic temperatures, which is indicative of superplasticity. The optimum superplastic temperature is 673 K, at which a maximum m value and no grain growth were observed. The results of the FEM simulation revealed that certain localized thinning occurred at the die entrance of the deformed rectangular pan due to the insufficient ductility of the material. The simulation results also showed that the optimum superplastic temperature of AZ31 is 673 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical study is presented in this paper to investigate the energy absorption of foam-filled aluminium tubes during crushing. The post-buckling mode of the foam-tube structures has been successfully simulated. The predicted compressive load-displacement is in a good agreement with experimental results. The energy absorption ability of the composite structure due to plastic deformation in a crushing process is evaluated by comparison with the tube structure without foam. The results indicate that the energy absorption of a foam-filled tube structure is superior to the tube without foam. The influences of the friction and the geometric parameters of the structure on the energy absorption have also been investigated. Results from this study will assist automotive industry to design crashworthy components based on foam-filled tubes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly porous titanium and titanium alloys with an open cell structure are promising implant materials due to their low elastic modulus, excellent bioactivity, biocompatibility and the ability for bone regeneration. However, the mechanical strength of the porous titanium decreases dramatically with increasing porosity, which is a prerequisite for the ingrowth of new bone tissues and vascularization. In the present study, porous titanium with porosity gradients, i.e. solid core with highly porous outer shell was successfully fabricated using a powder metallurgy approach. Satisfactory mechanical properties derived from the solid core and osseointegration capacity derived from the outer shell can be achieved simultaneously through the design of the porosity gradients of the porous titanium. The outer shell of porous titanium exhibited a porous architecture very close to
that of natural bone, i.e. a porosity of 70% and pore size distribution in the range of 200 - 500 μm. The peak stress and the elastic modulus of the porous titanium with a porosity gradient (an overall porosity 63%) under compression were approximately 152 MPa and 4 GPa, respectively. These
properties are very close to those of natural bone. For comparison, porous titanium with a uniform porosity of 63% was also prepared and haracterised in the present study. The peak stress and the elastic modulus were 109 MPa and 4 GPa, respectively. The topography of the porous titanium
affected the mechanical properties significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-porous nickel (Ni) with an open cell structure was fabricated by a special powder metallurgical process, which includes the adding of a space-holding material. The average pore size of the micro-porous Ni samples approximated 30 μm and 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the Ni samples were observed using scanning electron microscopy (SEM) and the mechanical properties were evaluated using compressive tests. For comparison, porous Ni samples with a macro-porous structure prepared by both powder metallurgy
(pore size 800 μm) and the traditional chemical vapour deposition (CVD) method (pore size 1300 μm) were also presented. Results indicated that the porous Ni samples with a micro-porous structure exhibited different deformation behaviour and dramatically increased mechanical properties,
compared to those of the macro-porous Ni samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, nickel foams with an open cell microporous structure were fabricated by the so-called space-holding particle sintering method, which included the adding of a particulate polymeric material (PMMA). The average pore size of the nickel foams approximated 10.5 μm; and the porosity ranged from 70 % to 80 %. The porous characteristics of the nickel foams were observed using scanning electron microscopy and the mechanical properties were evaluated using compressive tests. For comparison, nickel foams with an open-cell macroporous structure (pore size approximately 1.3 mm) were also presented. Results indicated that the nickel foams with a microporous structure possess enhanced mechanical properties than those with a macroporous structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ti-26 at.%Nb (hereafter Ti-26Nb) alloy foams were fabricated by space-holder sintering process. The porous structures of the foams were characterized by scanning electron microscopy (SEM). The mechanical properties of the Ti-26Nb foam samples were investigated using compressive test. Results indicate that mechanical properties of Ti-26Nb foam samples are influenced by foam porosity. The plateau stresses and elastic moduli of the foams under compression decrease with the increase of their porosities. The plateau stresses and elastic moduli are measured to be from 10~200 MPa and 0.4~5.0 GPa for the Ti-26Nb foam samples with porosities ranged from 80~50 %, respectively.