30 resultados para X ray powder diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rietveld Analysis of cement diffraction patterns have been used to determined the composition of cement since John Taylor's pioneering work in the 1990's. Since then many workers have used this techniques to analyse cement and supplementary cementitious materials and their hydration products, both for research and production control purposes. Nevertheless there are a number of factors, including the amorphous content of the cement and relative proportion of mineral polymorphs present in the initial clinker, whose impact on analysis are still not completely understood. X-ray powder diffraction beamlines from the Brazilian Synchrotron Light Laboratory (LNLS) and the Australian Synchrotron, which produce more intensity and better resolution than normal x-ray diffraction sources, were used to investigate cement diffraction patterns and the hydration products of a range of cement pastes cured for up to 28 days. This study highlights the information that can be obtained from X-ray diffraction analysis for controlling and optimizing cement production and concrete durability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithium fast-ion conductor, Li1+xAlxTi2−x(PO4)3 (LATP) has been modified via changes in stoichiometry during the processing steps. The resultant changes have been followed using 27Al MAS NMR, X-ray powder diffraction and impedance spectroscopy. The most important changes were those of the form Li1.3+4yAl0.3Ti1.7−y(PO4)3. It was possible to remove the AlPO4 phase (both tridymite and berlinite polymorphs), as monitored by X-ray diffractograms and 27Al NMR spectra. Consequently, these changes appear to result in increased grain boundary conductivity of the LATP material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of X-ray powder diffraction (XRD) and nuclear magnetic resonance (NMR) studies has demonstrated that attempted substitutions of Al, V and Nb into the framework of LiTi2(PO4)3 yield several impurity phases in addition to direct substitutions of Al into Ti and V, Nb into P sites. Direct substitutions were confirmed by changes in the unit cell dimensions as indicated by the peak shifts observed in the X-ray diffractographs and by analyses of the 27Al and 31P magic angle spinning (MAS) spectra. A major impurity phase was identified as AlPO4 (found in at least two polymorphs) and the amount present increases with increasing Al additions. The formation of AlPO4 appeared to be enhanced by further V but suppressed by Nb substitution. These results suggest that the presence of AlPO4 , together with the non-stoichiometric modified LTP, may be the cause for the observed densification of this material upon sintering and the increased ionic conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new inorganic-organic polymeric hybrids [Sn(pcp)] and [Cu(pcp)], pcp = CH2(PhPO2)22-, have been synthesized and structurally chracterized. The tin derivative has been obtained by reaction of the p,p'-diphenylmethylenediphosphinic acid (H2pcp) in water with SnCl2·2H2O, while the copper derivative has been synthesized through a hydrothermal reaction from the same H2pcp acid and Cu(O2CMe)2·H2O. The structures of these compounds have been solved "ab initio" by X-ray powder diffraction (XRPD) data. [Sn(pcp)] has a ladder-like polymeric structure, with tin(II) centers bridged by diphenylmethylenediphosphinate ligands, and alternating six- and eight-membered rings. The hemilectic coordination around the metal shows the tin(II) lone pair to be operative, resulting in significant interaction mainly with a C-C bond of one phenyl ring. The [Cu(pcp)] complex displays a polymeric columnar structure formed by two intersecting sinusoidal ribbons of copper(II) ions bridged by the bifunctional phosphinate ligands. The intersections of the ribbons are made of dimeric units of pentacoordinated copper ions. Crystal data for [Sn(pcp)]: monoclinic, space group P21Ic, a = 11.2851(1), b = 15.4495(6), c = 8.6830(1) Å, β= 107.546(1)°, V = 1443.44(9) Å, Z = 4. Crystal data for [Cu(pcp)]: triclinic, space group P, a = 10.7126(4), b = 13.0719(4), c = 4.9272(3) Å, α= 92.067(5), β= 95.902(7), γ= 87.847(4)°, V = 685.47(7), Z = 2. The tin compound has been characterized by 119Sn MAS NMR (magic-angle spinning NMR), revealing asymmetry in the valence electron cloud about tin. Low-temperature magnetic measurements of the copper compound have indicated the presence of weak antiferromagnetic interactions below 50 K.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched–exponential function, exp[-(tlT1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin–lattice relaxation rates was well described by Ti-1 = aT (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe–N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Montmorillonites are composed of aluminosilicate layers stacked one above the other, and the layer thickness is approximately 1 nm. In this work lithium modified montmorillonite (Li-MMT) was prepared and used as a lithium macro-anion salt in gel electrolytes. It was found that Li-MMT exhibited good compatibility with poly(ethylene glycol), DMSO and the ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (EMIdca), and a few of novel gel electrolytes based on Li-MMT were obtained. These gel electrolytes were investigated by X-ray powder diffraction, solid state NMR, conductivity measurements and cyclic voltammetry. High conductivities up to 10− 4 to 10− 3 S/cm at room temperature were observed with these macro-anion gel electrolytes. These gel materials were promising to be used as lithium conductive electrolytes in electrochemical devices, such as lithium batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ synchrotron X-ray powder diffraction studies of K-, Rb-, and Cs-exchanged natrolites between room temperature and 425 °C revealed that the dehydrated phases with collapsed frameworks start to form at 175, 150, and 100 °C, respectively. The degree of the framework collapse indicated by the unit-cell volume contraction depends on the size of the non-framework cation: K-exchanged natrolite undergoes an 18.8% unit-cell volume contraction when dehydrated at 175 °C, whereas Rb- and Cs-exchanged natrolites show unit-cell volume contractions of 18.5 and 15.2% at 150 and 100 °C, respectively. In the hydrated phases, the dehydration-induced unit-cell volume reduction diminishes as the cation size increases and reveals increasingly a negative slope as smaller cations are substituted into the pores of the natrolite structure. The thermal expansion of the unit-cell volumes of the dehydrated K-, Rb-, and Cs-phases have positive thermal expansion coefficients of 8.80 × 10−5 K−1, 1.03 × 10−4 K−1, and 5.06 × 10−5 K−1, respectively. Rietveld structure refinements of the dehydrated phases at 400 °C reveal that the framework collapses are due to an increase of the chain rotation angles, ψ, which narrow the channels to a more elliptical shape. Compared to their respective hydrated structures at ambient conditions, the dehydrated K-exchanged natrolite at 400 °C shows a 2.2-fold increase in ψ, whereas the dehydrated Rb- and Cs-natrolites at 400 °C reveal increases of ψ by ca. 3.7 and 7.3 times, respectively. The elliptical channel openings of the dehydrated K-, Rb-, to Cs-phases become larger as the cation size increases. The disordered non-framework cations in the hydrated K-, Rb-, and Cs-natrolite order during dehydration and the subsequent framework collapse. The dehydrated phases of Rb- and Cs-natrolite can be stabilized at ambient conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An array of pine-shaped nanostructures of aluminum nitride (AlN) was synthesized through direct reaction between Al vapor and nitrogen gas in direct current (DC) arc discharge plasma without any catalyst or template. The as-prepared nanostructure consists of many pine-needle-shaped leaves with conical shape tips. The structure, morphology, and optical property of the nanostructure have been characterized by X-ray powder diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. A possible growth mechanism of the pine-shaped nanostructure was discussed. Two factors were found to be essential for branched nanostructure growth, i.e., the reaction time and N2 pressure. The photoluminescence spectrum of the nanostructure of AlN revealed an intense emission band, suggesting that there may be potential applications in electronic and optoelectronic nanodevices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24 were synthesized by the solid-state reaction method. The crystal phases were characterized by X-ray powder diffraction. The photoluminescence excitation and emission spectra were investigated. The luminescence excitation and emission spectra confirm that the phosphors are efficiently excited by near UV light. The dependence of luminescence intensities on the heating temperatures was investigated. The Ca9Eu2W4O24 phosphor exhibits higher thermal stability than that of Sr9Eu2W4O24. The crystallographic sites for Eu3+ ions in Ca9Eu2W4O24 and Sr9Eu2W4O24 are investigated by the site-selective excitation spectra in the 5D07F0 wavelength region. It is identified that the Eu3+ ions occupy only M sites (statistically occupied by 0.5Eu and 0.5Ca) in Ca9Eu2W4O24 and, however, the Eu3+ ions can substitute both M sites (Eu3+ + Sr2+) and Sr2+ sites in Sr9Eu2W4O24. The luminescence spectra and the thermal stability are discussed on the basis of the crystal structure, Eu3+ site-distributions and the energy transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new porous CAU-1 derivatives CAU-1–NH2 ([Al4(OH)2(OCH3)4(BDC–NH2)3]·xH2O, BDC–NH22− = aminoterephthalate), CAU-1–NH2(OH) ([Al4(OH)6(BDC–NH2)3]·xH2O), CAU-1–NHCH3 ([Al4(OH)2(OCH3)4(BDC–NHCH3)3]·xH2O) and CAU-1–NHCOCH3 ([Al4(OH)2(OCH3)4(BDC–NHCOCH3)3]·xH2O) all containing an octameric [Al8(OH)4+y(OCH3)8−y]12+ cluster, with y = 0–8, have been obtained by MW-assisted synthesis and post-synthetic modification. The inorganic as well as the organic unit can be modified. Heteronuclear 1H–15N, 1H–13C and homonuclear 1H–1H connectivities determined by solid-state NMR spectroscopy prove the methylation of the NH2 groups when conventional heating is used. Varying reaction times and temperatures allow controlling the degree of methylation of the amino groups. Short reaction times lead to non-methylated CAU-1 (CAU-1–NH2), while longer reaction times result in CAU-1–NHCH3. CAU-1–NH2 can be modified chemically by using acetic anhydride, and the acetamide derivative CAU-1–NHCOCH3 is obtained. Thermal treatment permits us to change the composition of the Al-containing unit. Methoxy groups are gradually exchanged by hydroxy groups at 190 °C in air. Solid-state NMR spectra unequivocally demonstrate the presence of the amino groups, as well as the successful post-synthetic modification. Furthermore 1H–1H correlation spectra using homonuclear decoupling allow the orientation of the NHCOCH3 groups within the pores to be unravelled. The influence of time and temperature on the synthesis of CAU-1 was studied by X-ray powder diffraction, elemental analyses, and 1H liquid-state NMR and IR spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of the group 14 tetrachlorides MCl4 (M = Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures led to the unique anionic complexes [M(S2O7)3]2– that show the central M atoms in coordination of three chelating S2O72– groups. The mean distances M–O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S2O7)3]2– anions is achieved by alkaline metal ions A+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S2O7)3]2– anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg2[Ge(S2O7)3]Cl2 which forms when HgCl2 is added as a source for the counter cation. The Hg2+ and the Cl– ions form infinite cationic chains according to 1∞[HgCl2/2]+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A2SO4 and the dioxides MO2, whereas Hg2[Ge(S2O7)3]Cl2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na2[Si(S2O7)3] has additionally been examined by solid state 29Si and 23Na NMR spectroscopic measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of lanthanoid chlorides or nitrates with sodium 3-(4′-hydroxyphenyl)propionate (Na4hpp) in methanol or water has yielded complexes [La4(4hpp)12(H2O)6]·4H2O·MeOH (1), [Ce2(4hpp)6(H2O)3]·(H2O)·2.5(EtOH) (2a) (after crystallization from ethanol), [Ho(4hpp)3(H2O)2] (5), [Er(4hpp)3(H2O)2]·1.5(H2O) (6), and [Lu(4hpp)3]·H2O crystal composition (7), as well as heterobimetallics [NaCe2(4hpp)7(H2O)2]·3(H2O) (2b), [NaPr2(4hpp)7(H2O)2]·3(H2O) (3), and [NaNd2(4hpp)7(H2O)(MeOH)]·(H2O)·3(MeOH) (4). The structures of homometallic complexes 1, 2a, 6, and 7 reveal one-dimensional coordination polymers and vividly illustrate the effect of lanthanoid contraction with a decline in coordination numbers in the series from 9-11 (1), 9,10 (2a), 8 (6) to 7 (7) through variations in carboxylate coordination and ligation of water. Bimetallic complexes 2a and 4 each exhibit five different carboxylate binding modes as well as coordination of the 4-OH substituent of 4hpp to sodium thereby linking 1D polymer chains into a 2D network with both 9 and 10 coordinate Ln atoms and 6 coordinate sodium. Bulk products after drying lose solvent of crystallization in some cases (2a, 6), or exchange MeOH for water (4). X-ray powder diffraction indicates that bulk 2b and 3 are isotypic, as are bulk 5 and 6. In contrast to the excellent corrosion protection of lanthanum 4-hydroxycinnamate, compound 1 is ineffective in preventing the corrosion of mild steel, thereby establishing the importance of the -CHCH- structural unit of the former in its anti-corrosion properties. However the flexible -CH2-CH2- chain of the 4hpp ligand enables the crystal engineering of its lanthanoid complexes in a wide variety of structures as well as effective crystallization for structure determination, whereas the analogous 4-hydroxycinnamates have so far evaded structural characterization except for Ln = La, Ce owing to crystallization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-pressure behavior of scandium oxide (Sc2O3) has been investigated by angle-dispersive synchrotron powder X-ray diffraction and Raman spectroscopy techniques in a diamond anvil cell up to 46.2 and 42 GPa, respectively. An irreversible structural transformation of Sc2O3 from the cubic phase to a monoclinic high-pressure phase was observed at 36 GPa. Subsequent ab initio calculations for Sc2O3 predicted the phase transition from the cubic to monoclinic phase but at a much lower pressure. The same calculations predicted a second phase transition at 77 GPa from the monoclinic to hexagonal phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tensonometer for stretching metal foils has been constructed for the study of strain broadening in X-ray diffraction line profiles. This device, which is designed for use on powder diffractometers and was tested on Station 2.3 at Daresbury Laboratory, allows in situ measurements to be performed on samples under stress. It can be used for data collection in either transmission or reflection modes using either symmetric or asymmetric diffraction geometries. As a test case, measurements were carried out on an 18 µm-thick copper foil experiencing strain levels of up to 5% using both symmetric reflection and symmetric transmission diffraction. All the diffraction profiles displayed peak broadening and asymmetry which increased with strain. The measured profiles were analysed by the fundamental-parameters approach using the TOPAS peak-fitting software. All the observed broadened profiles were modelled by convoluting a refineable diffraction profile, representing the dislocation and crystallite size broadening, with a fixed instrumental profile predetermined using high-quality LaB6 reference powder. The deconvolution process yielded `pure' sample integral breadths and asymmetry results which displayed a strong dependence on applied strain and increased almost linearly with applied strain. Assuming crystallite size broadening in combination with dislocation broadening arising from f.c.c. a/2〈110〉{111} dislocations, the variation of mechanical property with strain has been extracted. The observation of both peak asymmetry and broadening has been interpreted as a manifestation of a cellular structure with cell walls and cell interiors possessing high and low dislocation densities.