130 resultados para Stress-based forming limit


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This research investigates the deformation mechanism in incremental sheet forming (ISF) with relation to necking and failure. A strain-based forming limit criterion is widely used in sheet-metal forming industry to predict necking. However, this criterion is strictly valid only when the strain path is linear throughout the deformation process. Where the strain path in ISF is often found to be severely nonlinear throughout the deformation history. Therefore, the practice of using a strain-based forming limit criterion often leads to erroneous assessments of formability and failure prediction. On the other hands, stress-based forming limit is insensitive against any changes in the strain path and hence it is used to model the necking and fracture limits. Simulation model is evaluated for a single point incremental forming using AA 6022-T4E32 and checked the accuracy against experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strain-based forming limit criterion is widely used in sheet-metal forming industry to predict necking. However, this criterion is usually valid when the strain path is linear throughout the deformation process [1]. Strain path in incremental sheet forming is often found to be severely nonlinear throughout the deformation history. Therefore, the practice of using a strain-based forming limit criterion often leads to erroneous assessments of formability and failure prediction. On the other hands, stress-based forming limit is insensitive against any changes in the strain path and hence it is first used to model the necking limit in incremental sheet forming. The stress-based forming limit is also combined with the fracture limit based on maximum shear stress criterion to show necking and fracture together. A derivation for a general mapping method from strain-based FLC to stress-based FLC using a non-quadratic yield function has been made. Simulation model is evaluated for a single point incremental forming using AA 6022-T43, and checked the accuracy against experiments. By using the path-independent necking and fracture limits, it is able to explain the deformation mechanism successfully in incremental sheet forming. The proposed model has given a good scientific basis for the development of ISF under nonlinear strain path and its usability over conventional sheet forming process as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incremental sheet forming enables sheet metal to deform above a conventional strain-based forming limit. The mechanics reason has not been clearly explained yet. In this work, the stress-based forming limit was utilized for through-thickness necking analysis to explain this uncovered question. Stress-based forming limit which has path-independency shows that the stress states in top, middle and bottom surfaces did not exceed the forming limit curve at the same time and each layer has different stress state in terms of their deformation history to suppress necking. It has been found that it is important to consider the gradient stress profile following the deformation history for the proper forming limit analysis of incremental sheet forming. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Forming Limit Diagram (FLD) is a conventional failure diagram to estimate necking limits of sheet metal for proportional loading conditions. Previous studies reveal that the FLD is not suitable for predicting the influence of nonlinear strain paths. This paper presents methodical comparison among all common available strain path independent strain/stress based limiting criteria. All the strain path independent strain based limiting criteria (Traditional Failure Diagram (TFD), Extended Forming Limit Diagram (XFLD), Extended Stress Ratio Based Forming Limit Diagram (ESRFLD), and Polar Effective Plastic StrainDiagram (PEPSD)) and stress based limiting criteria (Traditional Stress based Failure Diagram (TFSD), Stress Based Forming Limit Diagram (FLSD), Stress Ratio and Stress Based Forming Limit Diagram (SRFLSD), Extended Stress Based Forming Limit Diagram (XFLSD), and Polar Effective Stress Diagram (PESSD)) are approximately path-independent for smaller amount of pre-straining and path dependent for large pre-straining conditions. From advance image correlation technique precisely determination of local strains near necked area is possible today. However direct determination of local stresses near necked area is not possible. Therefore, local stresses and equivalent stress are determined by employing both yield criterion and strain-hardening law. Similarly equivalent strain is calculated by the use of yield criterion. Therefore, the choice of yield criterion has an impact on the results for TFD, XFLD, ESRFLD and PEPSD. However, selections of both yield criterion and strain-hardening law have substantial influence on the results for TFSD, FLSD, SRFLSD, XFLSD and PESSD. The inherent calculation error can be minimized by generation of experimental data for each material and then selection of representable yield criterion and strain-hardening law. Improvement of experimental techniques and generation of rigorous material data bank in various strain paths may help researchers to diagnose and resolve the issue. TFD, TFSD and XFLSD have inherent variables to take care the effect of through thickness stress, however rigorous experimental verification is needed before the field application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses finite element upper and lower bound limit analysis to produce chart solutions for three-dimensional (3D) natural slopes for both short- and long-term stability. The presented chart solutions are convenient tools that can be used for preliminary design purposes. The rigorous limit analysis results in this paper were found to bracket the true factor of safety within ±10% or better, which can be used as a benchmark for the solutions from other methods. The depth of the slip surfaces is observed to be generally shallow for most analyzed cases, particularly for the long-term slope stability problem. In addition, it was found that using a two-dimensional (2D) analysis may lead to significant differences in estimating safety factors, which can differ by 2%–60% depending on the slope geometry and soil properties. Therefore, great care and judgement are required when applying 2D analyses to 3D slope problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the design, modelling, fabrication, and biological evaluation of a microcantilever-based aptasensor. It is the first reported work on aptasensors with aptamer immobilized on a bare SU-8 surface. Aptasensor surface funtionalisation was achieved using gas plasma treatment. Label-free detection of thrombin molecules using the aptasensor was successfully demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biosensors based on microcantilevers convert biological recognition events into measurable mechanical displacements. They offer advantages such as small size, low sample volume, label-free detection, ease of integration, high-throughput analysis, and low development cost. The design and development of a microcantilever-based aptasensor employing SU-8 polymer as the fabrication material is presented in this paper. Aptamers are employed as bioreceptor elements because they exhibit superior specificity compared to antibodies due to their small size and physicochemical stability. To immobilise thrombin DNA aptamer on the bare SU-8 surface of the aptasensor, a combined plasma mode treatment method is implemented which modifies the surface of the aptasensor. Label-free detection of thrombin molecules using the fabricated aptasensor is successfully demonstrated. The measured deflection is one order of magnitude higher than that of a silicon nitride microcantilever biosensor. The developed aptasensor also demonstrates high specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biosensors based on microcantilevers convert biological recognition events into measurable mechanical displacements. They offer advantages such as small size, low sample volume, label-free detection, ease of integration, high-throughput analysis, and low development cost. The design and development of a microcantilever-based aptasensor employing SU-8 polymer as the fabrication material is presented in this paper. Aptamers are employed as bioreceptor elements because they exhibit superior specificity compared to antibodies due to their small size and physicochemical stability. To immobilise thrombin DNA aptamer on the bare SU-8 surface of the aptasensor, a combined plasma mode treatment method is implemented which modifies the surface of the aptasensor. Label-free detection of thrombin molecules using the fabricated aptasensor is successfully demonstrated. The measured deflection is one order of magnitude higher than that of a silicon nitride microcantilever biosensor. The developed aptasensor also demonstrates high specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 A material model for more effective analysis of plastic deformation of sheet materials is presented in this paper. The model is capable of considering the following aspects of plastic deformation behavior of sheet materials: the anisotropy in yielding stresses in different directions by using a quadratic yield function (based on Hill’s 1948 model and stress ratios), the anisotropy in work hardening by introducing non-constant flow stress hardening in different directions, the anisotropy in plastic strains in different directions by using a quadratic plastic potential function and non-associated flow rule (based on Hill’s 1948 model and plastic strain ratios, r-values), and finally some of the cyclic hardening phenomena such as Bauschinger’s effect and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening (so-called Armstrong-Frederick-Chaboche model). Basic fundamentals of the plasticity of the model are presented in a general framework. Then, the model adjustment procedure is derived for the plasticity formulations. Also, a generic numerical stress integration procedure is developed based on backward-Euler method (so-called multistage return mapping algorithm). Different aspects of the model are verified for DP600 steel sheet. Results show that the new model is able to predict the sheet material behavior in both anisotropic hardening and cyclic hardening regimes more accurately. By featuring the above-mentioned facts in the presented constitutive model, it is expected that more accurate results can be obtained by implementing this model in computational simulations of sheet material forming processes. For instance, more precise results of springback prediction of the parts formed from highly anisotropic hardened materials or that of determining the forming limit diagrams is highly expected by using the developed material model.