117 resultados para POLYPYRROLE MEMBRANE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flexible sensors capable of detecting large strain are very useful for health monitoring and sport applications. Here a strain sensor is prepared by applying a thin layer of conducting polymer, polypyrrole (PPy), onto the fiber surface of an elastic fibrous membrane, electrospun polydimethylsiloxane (PDMS). The sensor shows a normal monotonic resistance response to strain in the range of 0–50%, but the response becomes “on-off switching” mode when the strain is between 100 and 200%. Both response modes are reversible and can work repeatedly for many cycles. This unique sensing behavior is attributed to overstretching of the polypyrrole coating, unique fibrous structure, and elasticity of PDMS fibers. It may be useful for monitoring the states where motions are only allowed in a particular range such as joint rehabilitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, for the first time, polypyrrole-coated electrospun nanofibre mats have been used as separation membranes to electrolessly recover Au from aqueous [Au(III)Cl4]− solutions, based on a continuous-flow membrane separation process. With a [Au(III)Cl4]− solution passing through the nanofibre membrane, the Au(III) ions were converted into elemental Au. The gold recovered was deposited on the nanofibre membranes in the form of Au particles, as confirmed by EDX and XPS measurements. It has been found that the polypyrrole-coated electrospun nanofibres are good candidate membrane material for the recovery of Au, and the recovery efficiency is affected by the membrane thickness, the permeate flux rate and the initial [Au(III)Cl4]− concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capsular polypyrrole hollow nanofibers (PPy-HNFs) were fabricated via in situ polymerization of pyrrole on an organic-inorganic template, followed by acid etching. Their application in removing hexavalent chromium (Cr(vi)) from aqueous solution was then investigated. The morphologies of the capsular PPy-HNFs were studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which showed that the PPy-HNFs had a capsular structure in the walls of hollow nanofibers. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) data confirmed the adsorption of Cr on capsular PPy-HNFs. The adsorption capacity increased with reduced pH of the initial solution and the adsorption process can be described using the pseudo-second-order model. These capsular PPy-HNFs showed a high Cr(vi) adsorption capacity up to 839.3 mg g-1. This adsorption capacity was largely retained even after five adsorption/desorption cycles. Electrostatic attraction between Cr and PPy-HNFs was studied using a proposed adsorption mechanism. The capsular PPy-HNFs formed a flexible membrane, which allowed easy handling during application. This study has demonstrated the possibilities of using this capsular PPy-HNF membrane for heavy metal removal from aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Change of tensile properties, electrical conductivity and microwave shielding of electrochemically synthesized polypyrrole films with time are presented. Highly doped films had good electrical stability, retaining high microwave reflectivity throughout the aging period. Lightly doped films were less stable and partially reflective and absorptive of microwaves. FT-IR spectral observations revealed a progressive increase in intensity of an unsaturated conjugated carbonyl peak, which was not observed in the highly doped films, suggesting that the concentration of the dopant had an influence on the mechanism of degradation of conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction plays an important role in sheet metal forming (SMF) and the roughness of the surface of the sheet is a major factor that influences friction. In finite element method (FEM) models of metal forming, the roughness has usually been assumed to be constant; even though it is commonly observed that sheet drawn under tension over a tool radius results in the surface becoming shiny, indicating a major change in surface morphology. An elastic–plastic FEM model for micro-contact between a flat surface and a single roughness peak has been developed. The model was used to investigate the effect of the membrane stress in the sheet on the deformation of an artificial roughness peak. From the simulation results, the change in asperity, or deformation of the local peak, for a given nominal tool contact stress is significantly influenced by the local substrate stress. The height of the asperity decreases with increasing substrate stress and the local pressure is much higher than the nominal pressure. In addition, the local contact stress decreases with an increase in the substrate stress levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a new type of Aliquat 336/PVC membrane has been made for extraction experiments. This new membrane is capable of holding more Aliquat 336 than previously developed extraction membranes, hence overcoming a major problem that has confronted many researchers for a long time. The new membrane has been used to investigate the rate of extraction for the Cd(II) ion in 2.0 M HCl solution and the effect of membrane thickness on the rate of extraction. The experimental results have shown this new membrane has a promising future in relevant industrial applications. A new method is also used in this study to qualitatively identify the oily substance on the surface of membrane after the extraction experiment was completed. This oily substance has been found to be Aliquat 336.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of pyrrole, anthraquinone-2-sulphonic acid (AQSA) and iron(III) chloride (FeCl3) concentrations, reaction time and temperature on the electrical conductivity of polypyrrole (PPy) - coated poly(ethylene terephthalate) (PET) fabrics were investigated. With an increase in both the AQSA and FeCl3 concentrations, resistivity decreased to a point beyond which higher concentrations led to increased surface resistivity. Erosion of the polymer coating, in dynamic synthesis from continual abrasion, manifested as an exponential increase in the resistance of the coated textile substrate. This was not encountered in static synthesis conditions. Temperature affected the degree of surface and bulk polymerisation. The effect of polymerisation temperature on conductivity was negligible. Conductive polymer coating on textiles through chemical polymerisation enabled a smooth coherent film to encase individual fibres, which did not affect the tactile properties of the host substrate. The optimum FeCl3/pyrrole and AQSA FeCl3/pyrrole molar ratios were found to be 2.22 and 0.40 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heating effects in polypyrrole-coated polyethyleneterephthalate (PET)-Lycra® fabrics were studied. Chemical synthesis was employed to coat the PET fabrics by polypyrrole using ferric chloride as oxidant and antraquinone- 2-sulfonic acid (AQSA) and naphthalene sulfonic acid (NSA) as dopants. The coated fabrics exhibited reasonable electrical stability, possessed high electrical conductivity, and were effective in heat generation. Surface resistance of polypyrrole-coated fabrics ranged from approximately 150 to 500 /square. Different connections between conductive fabrics and the power source were examined. When subjected to a constant voltage of 24 V, the current transmitted through the fabric decreased about 10% in 72 h. An increase in resistance of conductive fabrics subjected to constant voltage was observed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (PPy) nanoparticles were prepared by using microemulsion polymerization processes at 3 °C. Particle characterization was performed by using FTIR, elementary analysis, UV–vis spectra and scanning electron microscope (SEM). The size of the nanoparticles varied from about 50 to 100 to 100 to 200 nm with the change in concentration of surfactant from 0.8 to 0.44 M. Polypyrrole nanoparticles were dedoped by a 10% NaOH solution, followed by a redoping process using a nuclear fast red kernechtrot dye, which has a sulfonate group. Dedoping changed the optical absorption properties of the nanoparticles.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric characteristics of conducting polymer-coated textiles in the frequency range 1–18 GHz were investigated using a non-contact, non-destructive free space technique. Polypyrrole coatings were applied by solution polymerization on fabric substrates using a range of concentrations of para-toluene-2-sulfonic acid (pTSA) as dopant and ferric chloride as oxidant. The conducting polymer coatings exhibited dispersive permittivity behaviour with a decrease in real and imaginary components of complex permittivity as frequency increased in the range tested. Both the permittivity and the loss factor were affected by the polymerization time of the conductive coating. It was found that the total shielding efficiency of these conductive fabrics is significant at short polymerization times and increases to values exceeding 80% with longer polymerization times. The reflection contribution to electromagnetic shielding also increases with polymerization time.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten anionic compounds, including four acidic dyes, were used to dope polypyrrole powder. The effects of the dopants on density, optical absorption and conductivity of the polypyrroles were studied. The presence of the dopant in the conducting polymer matrix was verified by ATR-FTIR spectroscopy. Density function theory (DFT) simulation was used to understand the effect of the dopants on the solid structure, optical absorption and energy band structures. Anthraquinone-2-sulfonic acid-doped polypyrrole yielded the highest conductivity. The dye-doped polypyrrole showed an enhancement in its UV–vis optical absorption.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a family of serine/threonine protein kinases that are pivotal in cellular regulation. Since its discovery in 1977, PKCs have been known as cytosolic and peripheral membrane proteins. However, there are reports that PKC can insert into phospholipids vesicles in vitro. Given the intimate relationship between the plasma membrane and the activation of PKC, it is important to determine whether such “membrane-inserted” form of PKC exists in mammalian cells or tissues. Here, we report the identification of an integral plasma membrane pool for all the 10 PKC isozymes in vivo by their ability to partition into the detergent-rich phase in Triton X-114 phase partitioning, and by their resistance to extractions with 0.2 M sodium carbonate (pH 11.5), 2 M urea and 2 M sodium chloride. The endogenous integral membrane pool of PKC in mouse fibroblasts is found to be acutely regulated by phorbol ester or diacylglycerol, suggesting that this pool of PKC may participate in cellular processes known to be regulated by PKC. At least for PKCα, the C2–V3 region at the regulatory domain of the kinase is responsible for membrane integration. Further exploration of the function of this novel integral plasma membrane pool of PKC will not only shed new light on molecular mechanisms underlying its cellular functions but also provide new strategies for pharmaceutical modulation of this important group of kinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper wool and polyester fabrics were pretreated with atmospheric plasma glow discharge (APGD) to improve the ability of the substrate to bond with anthraquinone-2-sulfonic acid doped conducting polypyrrole coating. A range of APGD gas mixtures and treatment times were investigated. APGD treated fabrics were tested for surface contact angle, wettability and surface energy change. Effect of the plasma treatment on the binding strength was analyzed by studying abrasion resistance, surface resistivity and reflectance. Investigations showed that treated fabrics exhibited better hydrophilicity and increased surface energy. Surface treatment by an APGD gas mixture of 95% helium/5% nitrogen yielded the best results with respect to coating uniformity, abrasion resistance and conductivity.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of permittivity measurements, electromagnetic interference shielding effectiveness, and heat generation due to microwave absorption in conducting polymer coated textiles are reported and discussed. The intrinsically conducting polymer, polypyrrole, doped with anthraquinone-2-sulfonic acid (AQSA) or para-toluene-2-sulfonic acid (pTSA) was applied on textile substrates and the resulting materials were investigated in the frequency range 1–18 GHz. The 0.54 mm thick conducting textile/polypyrrole composites absorbed up to 49.5% of the incident 30–35 W microwave radiation. A thermography station was used to monitor the temperature of these composites during the irradiation process, where absorption was confirmed via visible heat losses. Samples with lower conductivity showed larger temperature increases caused by microwave absorption compared to samples with higher conductivity. A sample with an average sheet resistivity of 150 Ω/sq. showed a maximum temperature increase of 5.27 °C, whilst a sample with a lower resistivity (105 Ω/sq.) rose by 3.85 °C.