171 resultados para Magnesium foams


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X~ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35 % andlor with the small pore size of about 70 μ are close to those of human cancellous bones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behaviours of metal foams greatly depend on their cell topology, including cell shape, cell size etc. as well as relative density and material properties of the cell wall. However, the cell shape effect on the mechanical behaviours of such materials appears to be ignored in previous research. In this paper, both analytic and finite element models are developed and employed to investigate the effect of cell shape on the mechanical behaviour of open-cell magnesium alloy (AZ91) foams under compression, including deformation modes and failure modes. For numerical modelling, both two-dimensional (2-D) and three-dimensional (3-D) finite element models are developed to predict the compressive behaviours of typical open-cell metal foams and capture the deformation modes and failure mechanisms. Two typical cell shapes i.e. cubic and diamond are taken into consideration. To validate these models, the analytic and numerical results are compared to the experimental data. Both the numerical and experimental data indicate that the cell shape significantly affects the compression behaviour of open-cell metal foams. In general, numerical results from the three-dimensional solid-element model show better agreement with the experimental results than those from other finite element models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of magnesium AZ31 are examined following hot compression testing and annealing. The grain size, fraction dynamically recrystallized and, in a couple of cases, the crystallographic texture are reported. The progress of dynamic recrystallization and the recrystallized grain size were sensitive to processing conditions, as expected. This effect was more marked in the former than in the latter, compared to other metals. It was also found that, for structures containing between 80 and 95% dynamic recrystallization, abnormal grain growth occurred during annealing. Irrespective of the whether or not abnormal grain growth occurred, the annealing step weakened the crystallographic texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of magnesium AZ31 are examined following hot compression testing and annealing. The grain size, fraction dynamically recrystallized and, in a couple of cases, the crystallographic texture are reported. It was found that the progress of dynamic recrystallization is strongly sensitive to processing conditions but that the dynamically
recrystallized grain size was less sensitive to stress than in other metals. It was also found that, for structures containing between 80 and 95 % dynamic recrystallization, abnormal grain growth occurs during annealing. The crystallographic texture produced is also sensitive to the deformation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermomechanical processing (TMP) structure map is proposed that plots the critical strains required for dynamic recrystallization along with the grain sizes that result. These maps are useful in identifying the limits to grain refinement and designing hot working processes. They are readily constructed for well studied alloys such as plain carbon steel. In light of the recent interest in the hot working of magnesium, initial steps are taken here to construct a TMP structure map for the most common wrought magnesium alloy, AZ31. The completion of dynamic recrystallization is estimated using a geometrical approach and a twinning region is identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical properties of porous magnesium with the porosity of 35–55% and the pore size of about 70–400 μm are investigated by compressive tests focusing on the effects of the porosity and pore size on the Young's modulus and strength. Results indicated that the Young's modulus and peak stress increase with decreasing porosity and pore size. The mechanical properties of the porous magnesium were in a range of those of cancellous bone. Therefore, it is suggested that the porous magnesium is one of promising scaffold materials for hard tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degeneration of the weight bearing bones of the ageing population often requires the inception of metallic biomaterials. Research in this area is receiving increased attention globally. However, most of today's artificial bone materials are dense and suffer from problems of adverse reaction, biomechanical mismatch and lack of appropriate space for the regeneration of new bone tissues. In the present study, novel ZrTi alloy foams with a porous structure and mechanical properties that are very close to those of bone were fabricated. These ZrTi alloy foams are biocompatible, and display a porous structure permitting the ingrowth of new bone tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution during compression (at 350°C and a strain rate of 0.01s-1) was examined for magnesium alloy AZ31 received in the "as-cast" condition. It was revealed that at low strains, many twins are produced and dynamically recrystallized (DRX) grains form as a necklace along pre-existing grain boundaries. At higher strains, DRX stagnates, most likely due to the accommodation of deformation in the DRX fraction of the material. It was also observed that twin boundaries act as sites for the nucleation of DRX grains. The analysis was repeated for samples pre-compressed to a strain of 0.15 at room temperature prior to the hot deformation step. The idea of these additional tests was to increase the degree of twinning and therefore the density of sites for the nucleation of DRX. It was found that statically recrystallized (SRX) grains developed at the twins during heating to the test temperature. When these samples were deformed, the peak flow stress was reduced by approximately 20% and the development of DRX was enhanced. This can be attributed to the accelerated nucleation of DRX in the refined SRX structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small number of crystal plasticity simulations and tensile tests are carried out with the aim of demonstrating that control of twinning can improve the uniform elongation of magnesium based alloys, It is suggested that this can be accomplished through texture manipulation because texture influences both the fraction of grains that undergo twinning and the strain required for the twinning reaction to go to completion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progress of “c-axis tension” twinning in magnesium is represented in an analytical framework and this is used as a basis for predicting the flow stress. The difference in the stress–strain curves between tension and compression can thus be modelled with a change to a parameter that reflects the fraction of grains that undergo twinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone injuries and failures often require the inception of implant biomaterial. Research in this area has received increasing attention recently. In particular, porous metals are attractive due to its unique physical, mechanical, and new bone tissue ingrowth properties. In the present study, TiZr alloy powders were prepared using mechanical alloying. Novel TiZr alloy foams with relative densities of approximately 0.3 were fabricated by a powder metallurgical process. The TiZr alloy foams displayed an interconnected porous structure resembling bone and the pore size ranged from 200 to 500 μm. The compressive plateau stress and the Young’s modulus of the TiZr foam were 78.4 MPa and 15.3 GPa, respectively. Both the porous structure and the mechanical properties of the TiZr foam were very close to those of natural bone.