16 resultados para METAL HYDRIDE ELECTRODE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water shortage is a major problem facing the power industry in many nations around the world. The largest consumer of water in most power plants is the wet cooling tower. To assist water and energy saving for thermal power stations using conventional evaporative wet cooling towers, a hybrid cooling system is proposed in this paper. The hybrid cooling system may consists of all or some of an air pre-cooler, heat pump, heat exchangers, and adsorption chillers together with the existing cooling tower. The hybrid cooling system described in the paper, consisting of a metal hydride heat pump operating in conjunction with the existing wet cooling tower, is capable of achieving water saving by reducing the temperature of warm water entering the cooling tower. Cooler inlet water temperatures effectively reduce the cooling load on existing towers. This will ultimately reduce the amount of water lost to the air by evaporation whilst still achieving the same cooling output. At the same time, the low grade waste energy upgraded by the metal hydride heat pump, in the process of cooling the water, can be used to replace the bleed of steam for the lower stage feed heaters which will increase overall cycle efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This data comprises a collection of Scanning Electron Microscope (SEM) images of transition metal nitrates. Research was conducted to assess the size and morphology of particles

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An electrochemically integrated multi-electrode array namely the wire beam electrode (WBE) has been used to characterize the behavior of cerium chloride (CeCl3) and lanthanum chloride (LaCl3) in inhibiting localized corrosion of AA2024-T3 and AA1100. CeCl3 has been found to inhibit AA2024-T3 corrosion in 0.005 M sodium chloride (NaCl) solution by suppressing galvanic corrosion activities and by creating a large number of insignificant anodes. It has also been shown to inhibit localized corrosion of AA1100 in 0.5 M NaCl solution by promoting the random distribution of minor anodes. LaCl3 has been found to inhibit localized corrosion of AA2024-T3 at 1000 ppm, although its efficiency dropped significantly when its concentration decreased to 500 ppm. The addition of CeCl3 and LaCl3 to corrosion testing cells at later stages was unable to effectively suppress existing corrosion anodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

All rights reserved. A graphene nanodots-encaged porous gold electrode via ion beam sputtering deposition (IBSD) for electrochemical sensing is presented. The electrodes were fabricated using Au target, and a composite target of Al and graphene, which were simultaneously sputtered onto glass substrates by Ar ion beam, followed with hydrochloric acid corrosion. The as-prepared graphene nanodots-encaged porous gold electrodes were then used for the analysis of heavy metal ions, e.g. Cu2+ and Pb2+ by Osteryoung square wave voltammetry (OSWV). These porous electrodes exhibited enhanced detection range for the heavy metal ions due to the entrapped graphene nanodots in 3-D porous structure. In addition, it was also found that when the thickness of porous electrode reached 40 nm the detection sensitivity came into saturation. The linear detection range is 0.009-4 μM for Cu2+ and 0.006-2.5 μM for Pb2+. Good reusability and repeatability were also observed. The formation mechanism and 3-D structure of the porous electrode were also investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectra (XPS). This graphene entrapped 3-D porous structure may envision promising applications in sensing devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although metal dithiocarbamate complexes have been studied extensively, there is in sate cases a distinct lack of data concerning redox properties and the products thereof. This is particularly true for complexes of the late transition and main group metals which are important in agriculture, industry, and chemical analysis. Hence, using electrochemical techniques, the redox behaviour of dithiocarbamate complexes of zinc, cadmium, mercury, lead, and tellurium has been examined. The products of oxidation and reduction have also been characterized by spectroscopic techniques (NMR, EPR, UV, and IR), mass spectrometry, conductivity, and Where possible, crystallographic study of an isolated compound. The species studied were without exception labile with the result that electrochemistry at mercury electrodes was influenced by the great stability of the mercury dithiocarbamate (Hg(RR’dtc) 2) complexes. Investigation of the latter showed that oxidative processes in the presence of mercury led to a new class of expounds: polymeric mercury dithiocarbamato cations. Oily one of these could be isolated as a solid, with the formula [Hg5(RR’dtc) 8](C104)2 For R=R’=ethyl the crystal structure was determined. For other metal dithiocarbamates the electrochemical behaviour at mercury electrodes in many ways paralleled that of the mercury analogues. Thus oxidative processes involved oxidation of electrode mercury to form mixed metal cationic species. Polarographic reduction led to the metal amalgam, usually via formation of mercury dithiocarbamate. Electrochemical studies at inert electrode materials such as platinum yielded distinctly different responses, with both oxidation and reduction being more difficult. Oxidation products at platinum electrodes gave identical polarographic responses to those firm mercury electrodes due to rapid interaction of the former with electrode mercury. The results are in sharp contrast to much of the previous work on transition metal dithiocarbamates for which electrochemical redox processes are often metal based arid not explicated by interaction with the electrode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage–power sources with enhanced safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The air electrode, which reduces oxygen (O2), is a critical component in energy generation and storage applications such as fuel cells and metal/air batteries. The highest current densities are achieved with platinum (Pt), but in addition to its cost and scarcity, Pt particles in composite electrodes tend to be inactivated by contact with carbon monoxide (CO) or by agglomeration. We describe an air electrode based on a porous material coated with poly(3,4-ethylenedioxythiophene) (PEDOT), which acts as an O2 reduction catalyst. Continuous operation for 1500 hours was demonstrated without material degradation or deterioration in performance. O2 conversion rates were comparable with those of Pt-catalyzed electrodes of the same geometry, and the electrode was not sensitive to CO. Operation was demonstrated as an air electrode and as a dissolved O2 electrode in aqueous solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three cyclic vinyl based additives, based respectively on oxygen, sulphur and fluorine, are tested for their ability to improve the cycling of lithium in a hostile ionic liquid medium. Oxygen based vinylene carbonate is found to offer the best protection of the lithium metal whilst allowing very consistent lithium cycling to occur. The vinylene carbonate based system under study is, however, imperfect. Lithium metal is deposited in a dendritic morphology, and vinylene carbonate is rapidly consumed during lithium cycling if it is present in a small quantity. Our results suggest that ionic liquid systems critically relying on a small amount of additive to protect a lithium electrode are not viable for long cycle life secondary batteries. It is suggested that an ionic liquid which itself is lithium metal compatible be used instead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, LaMO3 and LaNi0.5M0.5O3 (M = Ni, Co, Fe, Mn and Cr) perovskite oxide electrocatalysts were synthesized by a combined ethylenediaminetetraacetic acid-citrate complexation technique and subsequent calcinations at 1000 °C in air. Their powder X-ray diffraction patterns demonstrate the formation of a specific crystalline structure for each composition. The catalytic property of these materials toward the oxygen reduction reaction (ORR) was studied in alkaline potassium hydroxide solution using the rotating disk and rotating ring-disk electrode techniques. Carbon is considered to be a crucial additive component because its addition into perovskite oxide leads to optimized ORR current density. For LaMO3 (M = Ni, Co, Fe, Mn and Cr)), in terms of the ORR current densities, the performance is enhanced in the order of LaCrO3, LaFeO3, LaNiO3, LaMnO3, and LaCoO3. For LaNi0.5M0.5O3, the ORR current performance is enhanced in the order of LaNi0.5Fe0.5O3, LaNi0.5Co0.5O3, LaNi0.5Cr0.5O3, and LaNi0.5Mn0.5O3. Overall, LaCoO3 demonstrates the best performance. Most notably, substituting half of the nickel with cobalt, iron, manganese, or chromium translates the ORR to a more positive onset potential, suggesting the beneficial catalytic effect of two transition metal cations with Mn as the most promising candidate. Koutecky–Levich analysis on the ORR current densities of all compositions indicates that the four-electron pathway is favored on these oxides, which are consistent with hydroperoxide ion formation of <2%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several new technical developments have been made based on the combined use of the wire beam electrode (WBE), electrochemical noise analysis (ENA) and the scanning reference electrode technique (SRET). These have included: (i) The WBE-R n method- the combined use of the WBE and the noise resistance (Rn) to map the rates and patterns of uniform or localized corrosion; (ii) The WBE-Noise Signatures method- the combined use of the WBE and the noise signature to detect the origination and propagation of localized corrosion; and (iii) The WBE-SRET method- the combined use of the WBE and SRET to investigate localized corrosion from both the metallic and electrolyte phases of a corroding metal surface. This paper presents a brief review on these novel methods and their applications for detecting general and localized corrosion, for mapping the rates of corrosion, and for studying corrosion inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen doped SnO2 polycrystalline nanostructures were produced from commercial SnO powders in a new system that combines a low-temperature plasma with heating. The method has the potential to improve the initial efficiency and the cycling performance of SnO2 anodes in Li-ion batteries. With this system, the temperature of the SnO to SnO2 conversion was lowered from 430 to 320 °C, up to 5 at% of doped nitrogen was detected and a nano-scale polycrystalline structure was observed in the product. Combining heat and low-pressure plasma is a promising approach for the production and treatment of enhanced energy storage materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of transition metal nitrides and oxynitrides, which are actively investigated today as electrode materials in a wide range of energy conversion and storage devices, possess an oxide layer on the surface. Upon exposure to ambient air, properties of this layer progressively change in the process known as "ageing". Since a number of electrochemical processes involve the surface or sub-surface layers of the active electrode compounds only, ageing could have a significant effect on the overall performance of energy conversion and storage devices. In this work, the influence of the ageing of tungsten and molybdenum oxynitrides on their electrochemical properties in supercapacitors is explored for the first time. Samples are synthesised by the temperature-programmed reduction in NH3 and are treated with different gases prior to exposure to air in order to evaluate the role of passivation in the ageing process. After the synthesis, products are subjected to controlled ageing and are characterised by low temperature nitrogen adsorption, X-ray photoelectron spectroscopy and transmission electron microscopy. Capacitive properties of the compounds are evaluated by performing cyclic voltammetry and galvanostatic charge and discharge measurements in the 1 M H2SO4 electrolyte. © 2014 the Partner Organisations.