54 resultados para FINE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber surface morphologies and associated internal structures are closely related to its properties. Unlike other fibers including cotton, bast fibers possess transverse nodes and fissures in cross-sectional and longitudinal directions. Their morphologies and associated internal structures were anatomically examined under the scanning electron microscope. The results showed that the morphologies of the nodes and the fissures of bast fibers varied depending on the construction of the inner fibril cellular layers. The transverse nodes and fissures were formed by the folding and spiralling of the cellular layers during plant growth. The dimensions of nodes and fissures were determined by the dislocations of the cellular layers. There were also many longitudinal fissures in bast fibers. Some deep longitudinal fissures even opened the fiber lumen for a short way along the fiber. In addition, the lumen channel of the bast fibers could be disturbed or disrupted by the nodes and the spirals of the internal cellular layers. The existence of the transverse nodes and fissures in the bast fibers could degrade the fiber mechanical properties, whereas the longitudinal fissures may contribute to the very rapid moisture absorption and desorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Fine motor difficulties can impact on the academic, social and emotional development of a student. Aim: The aims of this paper are to: (i) investigate the need for support to students experiencing fine motor  difficulties from the perspective of their classroom teachers, and (ii) report on the level of knowledge teachers have in regard to the role of occupational therapists in supporting students with fine motor difficulties.  Methods: Fifteen teachers from a stratified random sample of public schools within two regions of Victoria, Australia, were interviewed in this qualitative, grounded theory investigation. Results: Results showed that the current level of support for students with fine motor difficulties is inadequate. Conclusion: Occupational therapists in Victoria need to advocate their role in developing the fine motor skills of students at both an organisational and an individual level in order to increase the access of students with fine motor difficulties to occupational therapy services.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnesium alloy AZ31 was processed by severe hot rolling and annealing. This processing was optimised to produce recrystallised grain sizes as small as 2.2 μm. The texture of the processed plate was similar to that of the as-received material, with a strong basal alignment in the normal direction. Tensile testing of the fine grained material showed an increase in the strength and elongation compared to the as-received plate. It is  concluded that the improved mechanical properties of the fine grained material results from a refinement in the grain size and the elimination of shear bands that pre-exist in the as-received material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum alloy 6082 was subjected to equal-channel angular pressing (ECAP), which resulted in an ultra-fine-grained (UFG) microstructure with an average grain size of 0.2–0.4 μm. There was a pronounced effect of the grain refinement on the strain-rate sensitivity and tensile ductility. The Hart criterion of tensile necking fails to explain the observed ductility of the UFG material at low strain rates. A correlation between the observed stronger-than-expected ductility and a tendency to microshear band formation at low strain rates was established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on the effect of strain rate on the deformation behaviour of an ultrafine grained Al alloy 6082 produced by equal channel angular  pressing. The uniform tensile elongation was found to increase with  decreasing strain rate very substantially. This effect is discussed in terms of the mechanisms that control plastic deformation of the alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The femoral region ('groin') appears to be increasingly commonly used by injecting drug users in the UK. With the advent of Britain's first supervised prescribed injectable opioid treatment clinic, unprecedented decisions and judgements were required about the safe supervision of this practice, or whether to permit this behaviour on site at all. This paper reports the reasons for, and outcome of, development of a clinical policy on injecting into the deep femoral vein (groin injecting)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prehension is a fundamental skill usually performed as part of a complex action sequence in everyday tasks. Using an information processing framework, these studies examined the effects of task complexity, defined by the number of component movement elements (MEs), on performance of prehension tasks. Of interest was how motor control and organisation might be influenced by age and/or motor competence. Three studies and two longitudinal case studies examined kinematic characteristics of prehension tasks involving one-, two- and three-MEs: reach and grasp (low-complexity); reach, grasp and object placement (moderate-complexity); and reach, grasp and double placement of object (high-complexity). A pilot study established the suitability of tasks and procedures for children aged 5-, 8- and 11-years and showed that responses to task complexity and object size manipulations were sensitive to developmental changes, with increasing age associated with faster movements. Study 2 explored complexity and age effects further for children aged 6- and 11-years and adults. Increasing age was associated with shorter and less variable movement times (MTs) and proportional deceleration phases (%DTs) across all MEs. Task complexity had no effect on simple reaction time (SRT), suggesting that there may be little preprogramming of movements beyond the first ME. In addition, MT was longer and more on-line corrections were evident for the high- compared to the moderate-complexity task for ME1. Task complexity had a greater influence on movements in ME2 and ME3 than ME1. Adults, but not children, showed task specific adaptations in ME2. Study 3 examined performance of children with different levels of motor competence aged between 5- and 10-years. Increasing age was associated with shorter SRTs, and MTs for ME1 only. A decrease in motor competence was associated with greater difficulty in planning and controlling movements as indicated by longer SRTs, higher %DTs and more on-line corrections, especially in ME2. Task complexity affected movements in all MEs, with a greater influence on ME1 compared to Study 2. Findings also indicated that performance in MEs following prehension may be especially sensitive to motor competence effects on movement characteristics. Case studies for two children at risk of Developmental Coordination Disorder (DCD) revealed two different patterns of performance change over a 16-17 month period, highlighting the heterogeneous nature of DCD. Overall, findings highlighted age-related differences, and the role of motor competence, in the ability to adapt movements to task specific requirements. Results are useful in guiding movement education programmes for children with both age-appropriate and lower levels of motor competence.