81 resultados para Electrochemical impedance spectroscopy techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) was used to study carbon dioxide (CO2) corrosion product scales and their effects on further CO2 corrosion. Objectives were to determine the suitability of EIS for studying corrosion scales and to investigate the influence of environmental factors on scale formation. EIS provided useful information about protective abilities and electrochemical properties of corrosion scales. CO2 corrosion scales formed at high-temperature and pressure provided better protection than those formed at low-temperature and pressure. The level of protection of the scale formed at higher temperature and pressure increased with exposure time. EIS results were compared with coupon weight-loss measurements. Scales were analyzed using a combination of Fourier transform infrared (FTIR) analysis, x-ray diffraction (XRD), and electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) was used to study carbon dioxide (CO2) corrosion product scales and their effects on further CO2 corrosion. Objectives were to determine the suitability of EIS for studying corrosion scales and to investigate the influence of environmental factors on scale formation. EIS provided useful information about protective abilities and electrochemical properties of corrosion scales. CO2 corrosion scales formed at high-temperature and pressure provided better protection than those formed at low-temperature and pressure. The level of protection of the scale formed at higher temperature and pressure increased with exposure time. EIS results were compared with coupon weight-loss measurements. Scales were analyzed using a combination of Fourier transform infrared (FTIR) analysis, x-ray diffraction (XRD), and electron microscopy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disbondment of protective organic coatings is a widely reported pipeline coating failure mode in the oil and gas industry. Traditional methods of evaluating cathodic disbondment of pipeline coatings are based on visual inspection of pipeline conditions, and laboratory testing of cathodic disbondment resistance (CDR) using standard methods such as ASTM G8. Although some other laboratory-based techniques, such as scanning kelvin probe and scanning acoustic microscopy have been used to study the cathodic disbondment (CD) of coatings, these are often difficult to apply in practical testing. Over the past decade, electrochemical impedance spectroscopy (EIS) has been employed as a potential method for measuring CD. This paper reports preliminary results from an EIS study designed to characterise CD behaviour of epoxy coatings under excessive cathodic protection. EIS data correlated well with the area of disbonded coating. Analysis of EIS data can provide valuable information on the initiation and rates of CD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) was used to study and evaluate commercial batch treatment inhibitors which are used for protecting oil wells, gas wells, and pipelines from CO2 corrosion, focusing on the evaluation of inhibitor film persistency. It was found that theformation and deterioration of batch treatment inhibitor films were accompanied by typical impedance spectral changes. During the formation of inhibitor films, electrode impedance showed a rapid increase and the Bode phase angle plots also showed a sudden change. Thus, the formation of inhibitor film was a very fast process. During the deterioration of inhibitor films, electrode impedance showed a gradual decrease and the Bode phase angle plots showed changes which characterised the three stages of the inhibitor film deterioration process. The relationships between EIS and corrosion rate are discussed, including comparisons with weight loss measurements. Based on the experimental findings in the present work, a method is suggested for estimating the persistency of inhibitor films by monitoring the characteristic changes in the Bode phase angle plots and by measuring electrochemical charge transfer resistance at the second and third stages of the inhibitor film deterioration process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disbondment of protective organic coatings under excessive cathodic protection potentials is a widely reported coating failure mechanism. Traditional methods of evaluating cathodic disbondment are based on ex situ visual inspection of coated metal surfaces after being exposed to standard cathodic disbondment testing conditions for a long period of time. Although electrochemical impedance spectroscopy (EIS) has been employed as an effective means of evaluating various anti-corrosion properties of organic coatings; its application for assessing the cathodic disbondment resistance of coatings has not been sufficiently exploited. This paper reports an experimental study aimed at developing EIS into a tool for in situ measurement and monitoring of cathodic disbondment of coatings. A clear correlation between EIS parameters and the disbonded coating areas has been confirmed upon short term exposure of epoxy-coated steel electrodes to cathodic disbondment conditions; however the degree of this correlation was found to decrease with the extension of exposure duration. This observation suggests that EIS loses its sensitivity with the propagation of coating disbondment, and that in order to achieve quantitative determination of the coating cathodic disbondment localized EIS measurements are required to measure the parameters related to local disbonded areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Institute of Materials, Minerals and Mining. Published by Maney on behalf of the Institute. This paper describes an interesting attempt to quantitatively evaluate the corrosion behaviour of base oils using a novel approach based on electrochemical techniques. The present study evaluates the corrosion behaviour of biodegradable base oils with and without additives in an aqueous chloride solution using electrochemical measurements. Potentiodynamic polarisation and electrochemical impedance spectroscopy techniques were used to quantitatively determine the corrosion behaviour of these oils, and the results were compared to the conventional immersion tests. Both these electrochemical measurements were carried out in a three-electrode system where AS1020 mild steel alloy was used as a working electrode in a purpose made pipette cell. The results obtained from the electrochemical measurements help to evaluate the best biodegradable base oil for formulating eco-friendly industrial lubricants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(terthiophene) is an electronically conducting polymer with potential applications in solar energy devices. In the present study a series of poly(terthiophene) (PTTh) films are chemically polymerized (CP) at various temperatures and compared with a novel method of vapour phase polymerization (VPP). Utilizing the thiophene trimer (terthiophene) as the starting material, polymerization is achieved with Fe(III) tosylate. The films are characterized by their Raman and absorption spectra, in addition to differential scanning calorimetry (DSC), optical microscopy, electrochemical impedance spectroscopy (EIS) and four-point probe surface conductivity measurements. From the spectroscopy studies, increased conjugation length of the polymer chains with decreasing temperature or vapour phase polymerization is evident. More surprisingly, DSC results indicate the order of the polymer chains is dramatically enhanced by vapour phase polymerization and the D.C. conductivity is an order of magnitude higher for VPP compared with traditional CP films. Additionally, the optical micrographs reveal a significantly different morphology than the films cast from solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquid surface treatments are proposed as a method of controlling corrosion processes on magnesium alloys. An important magnesium alloy, ZE41 (nominally 4% Zn and 1% rare earth), was treated with the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate (P66614DPP). Impedance spectra were acquired at intervals during the treatment, indicating the development of a film and allowing a measure of the film formation process to be obtained over time. Mechanically polished and electro-polished surfaces were prepared; these surfaces, treated and untreated, were subsequently exposed to 0.1 M NaCl aqueous solutions. The corrosion behavior of the prepared surfaces were assessed using impedance spectroscopy and optical microscopy. The results indicated a significant role for the method of surface preparation used and, in both cases, the ionic liquid treatment produced a more corrosion-resistant surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrolytes of a room temperature ionic liquid (RTIL), trimethyl(isobutyl)phosphonium (P111i4) bis(fluorosulfonyl)imide (FSI) with a wide range of lithium bis(fluorosulfonyl)imide (LiFSI) salt concentrations (up to 3.8 mol kg−1 of salt in the RTIL) were characterised using a combination of techniques including viscosity, conductivity, differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), nuclear magnetic resonance (NMR) and cyclic voltammetry (CV). We show that the FSI-based electrolyte containing a high salt concentration (e.g. 1:1 salt to IL molar ratio, equivalent to 3.2 mol kg−1 of LiFSI) displays unusual transport behavior with respect to lithium ion mobility and promising electrochemical behavior, despite an increase in viscosity. These electrolytes could compete with the more traditionally studied nitrogen-based ionic liquids (ILs) in lithium battery applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 In this study, the inhibitive performance of two pyridine derivatives as corrosion inhibitors for mild steel was examined under stagnant condition and hydrodynamic flow in HCl solution at 25. °C. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were employed. To explore the inhibitors adsorption mechanism, Langmuir isotherm and quantum chemical studies were used. The results of electrochemical measurements show that the inhibitor concentration has a positive effect on its efficiency while for hydrodynamic condition, it is vice versa. Corrosion attack morphologies were observed at stagnant and hydrodynamic conditions to verify qualitatively the results obtained by electrochemical methods. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemically integrated multi-electrode array has been used for monitoring and visualizing the cathodic disbondment of
defective coatings by measuring local electrochemical impedance. Compared with the conventional electrochemical impedance and
local current measurement approaches, this new approach significantly enhances the sensitivity of detecting the propagation of
coating disbondment by eliminating the effects of the dominating low impedance regions, such as those that arise at coating defects,
and thus increases the visibility of higher impedance regions deep in the disbonded coating. Furthermore, it facilitates the probing
of electrode processes and mechanisms in selected local electrode regions.