29 resultados para 091205 Functional Materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced macromolecular nanofiber network and its implications have been developed by employing the understanding of its formation with an emphasis on its topological aspect. Using agarose aqueous solution as a typical example, the macromolecular nanofiber network of soft functional materials has been clearly visualized for the first time using the developed technique of field emission scanning electronic microscopy coupled with flash-freeze-drying. Both the systematic kinetic study and the image evidence indicates that the nanofiber network in soft functional materials such as agarose turns out to form through a self-expitaxial nucleation-controlled process. This new understanding enables us to engineer ultra functions of soft materials via nanofiber network architecture, which in turn opens up a new direction in nano fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article gives an overview of the current progress of a class of supramolecular soft materials consisting of fiber networks and the trapped liquid. After discussing the up-to-date knowledge on the types of fiber networks and the correlation to the rheological properties, the gelation mechanism turns out to be one of the key subjects for this review. In this concern, the following two aspects will be focused upon: the single fiber network formation and the multi-domain fiber network formation of this type of material. Concerning the fiber network formation, taking place via nucleation, and the nucleation-mediated growth and branching mechanism, the theoretical basis of crystallographic mismatch nucleation that governs fiber branching and formation of three-dimensional fiber networks is presented. In connection to the multi-domain fiber network formation, which is governed by the primary nucleation and the subsequent formation of single fiber networks from nucleation centers, the control of the primary nucleation rate will be considered. Based on the understanding on the the gelation mechanism, the engineering strategies of soft functional materials of this type will be systematically discussed. These include the control of the nucleation and branching-controlled fiber network formation in terms of tuning the thermodynamic driving force of the gelling system and introducing suitable additives, as well as introducing ultrasound. Finally, a summary and the outlook of future research on the basis of the nucleation-growth-controlled fiber network formation are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The engineering of soft functional materials based on the construction of three-dimensional interconnecting self-organized nanofiber networks is reported. The system under investigation is an organogel formed by N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) in propylene glycol. The engineering of soft functional materials is implemented by controlling primary nucleation kinetics of GP-1, which can be achieved by both reducing thermodynamic driving force and/or introducing a tiny amount of specific copolymers (i.e., poly(methyl methacrylate comethacrylic acid)). The primary nucleation rate of GP-1 is correlated to the number density of GP-1 spherulites, which determines the overall rheological properties of soft functional materials. The results show that the presence of a tiny amount of the polymer (0.01-0.06%) can effectively inhibit the nucleation of GP-1 spherulites, which leads to the formation of integrated fiber networks. It follows that with the additive approach, the viscoelasticity of the soft functional material is significantly enhanced (i.e., more than 1.5 times at 40 °C). A combination of the thermal and additive approach led to an improvement of 3.5 times in the viscosity of the gel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rheological properties of supramolecular soft functional materials are determined by the networks within the materials. This research reveals for the first time that the volume confinement during the formation of supramolecular soft functional materials will exert a significant impact on the rheological properties of the materials. A class of small molecular organogels formed by the gelation of N-lauroyl-L-glutamic acid din-butylamide (GP-1) in ethylene glycol (EG) and propylene glycol (PG) solutions were adopted as model systems for this study. It follows that within a confined space, the elasticity of the gel can be enhanced more than 15 times compared with those under un-restricted conditions. According to our optical microscopy observations and rheological measurements, this drastic enhancement is caused by the structural transition from a multi-domain network system to a single network system once the average size of the fiber network of a given material reaches the lowest dimension of the system. The understanding acquired from this work will provide a novel strategy to manipulate the network structure of soft materials, and exert a direct impact on the micro-engineering of such supramolecular materials in micro and nano scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crystalline spherulitic fiber networks are commonly observed in polymeric and supramolecular functional materials. The elasticity of materials with this type of network is low if interactions between the individual spherulites are weak (mutually exclusive). Improving the elasticity of these materials is necessary because of their important applications in many fields. In this work, the engineering of the microstructures and rheological properties of this type of material is carried out. A small molecule organogel formed by the gelation of N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) in propylene glycol (PG) is used as an example. The elasticity of this material is improved by controlling the thermodynamic driving force, the supersaturation of the gelator, and by using a selected copolymer additive to manipulate the primary nucleation of GP-1. Because of the weak interactions between the GP-1 spherulites, with the same fiber mass, the elasticity of GP-1/PG gel is less than half of those of the other two gels formed by GP-1 and 2-hydroxystearlic acid in solvent benzyl benzoate (BB), which are supported by interconnecting spherulitic fiber networks. This work develops a robust approach to the engineering of supramolecular functional materials especially those with mutually exclusive spherulite fiber networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional fiber networks were created from an organogel system consisting mainly of elongated fibrils by using a nonionic surfactant as an additive. The presence of the surfactant molecules manipulates the network structure by enhancing the mismatch nucleation on the growing fiber tips. Both the fiber network structure and the rheological properties of the material can be finely tuned by changing the surfactant concentration, which provides a robust approach to the engineering of supramolecular soft functional materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rheological properties of a hierarchically structured supramolecular soft material are mainly determined by the structure of its network. Controlling the thermodynamic driving force of physical gels (one type of such materials) during the formation has proven effective in manipulating the network structure due to the nature of nucleation and growth of the fiber network formation in such a supramolecular soft material. Nevertheless, it is shown in this study that such a property can be dramatically influenced when the volume of the system is reduced to below a threshold value. Unlike un-confined systems, the network structure of such a soft material formed under volume confinement contains a constant network size, independent of the experimental conditions, i.e. temperature and solute concentration. This implies that the size of the fiber networks in such a material is invariable and free from the influence of external factors, once the volume is reduced to a threshold. The observations of this work are significant in the control of the formation of fibrous networks in materials of this type.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As one class of the most important supramolecular functional materials, gels formed by low molecular weight gelators (LMWGs) have many important applications. The key important parameters affecting the in-use performance of a gel are determined by the hierarchical fiber network structures. Fiber networks consisting of weakly interacting multiple domains are commonly observed in gels formed by LMWGs. The rheological properties, particularly the elasticity, of a gel with such a fiber network are weak due to the weak interactions between the individual domains. As achieving desirable rheological properties of such a gel is practically relevant, in this work, we demonstrate the engineering of gels with such a type of fiber network by controlling crystallization of the gelator. Two example gels formed by a glutamic acid derivative in a non-ionic surfactant Tween 80 and in propylene glycol were engineered by controlling the thermodynamic driving force for crystallization. For a fixed gelator concentration, the thermodynamic driving force was manipulated by controlling the temperature for fiber crystallization. It was observed that there exists an optimal temperature at which a gel with maximal elasticity can be fabricated. This will hopefully provide guidelines for producing high performance soft materials by engineering their fiber network structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have first demonstrated that a random laser action generated by a hybrid film composed of a semiconducting organic polymer (SOP) and TiO2 nanoparticles can be used to detect 2,4,6-trinitrotoluene (TNT) vapors. The hybrid film was fabricated by spin-casting SOP solution dispersed with nanosized TiO2 particles on quartz glass. The SOP in the hybrid film functioned as both the gain medium and the sensory transducer. A random lasing action was observed with a certain pump power when the size (diameter of 50 nm) and concentration (8.9 - 1012/cm3) of TiO2 nanoparticles were optimized. Measurements of fluorescence quenching behavior of the hybrid film in TNT vapor atmosphere (10 ppb) showed that attenuated lasing in optically pumped hybrid film displayed a sensitivity to vapors of explosives more than 20 times higher than was observed from spontaneous emission. This phenomenon has been explained with the four-level laser model. Since the sensory transducer used in the hybrid polymer/nanoparticles system could be replaced by other functional materials, the concept developed could be extended to more general domains of chemical or environment detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The architecture of self-organized three-dimensionally interconnected nanocrystal fibrillar networks has been achieved by ultrasound from a solution consisting of separate spherulites. The ultrasound stimulated structural transformation is correlated to the striking ultrasonic effects on turning nongelled solutions or weak gels into strong gels instantly, with enhancement of the storage modulus up to 3 magnitudes and up to 4 times more gelling capability. The basic principle involved in the ultrasound-induced structural transformation is established on the basis of the nucleation-and-growth model of a fiber network formation, and the mechanism of seeding multiplication, aggregation suppressing, and fiber distribution and growth promotion is proposed. This novel technique enables us to produce self-supporting gel functional materials possessing significantly modified macroscopic properties, from materials previously thus far considered to be “useless”, without the use of chemical stimuli. Moreover, it provides a general strategy for the engineering of self-organized fiber network architectures, and we are consequently able to achieve the supramolecular functional materials with controllable macroscopic properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A finite element method based on ABAQUS is employed to examine the correlation between the microstructure and the elastic response of planar Cayley treelike fiber networks. It is found that the elastic modulus of the fiber network decreases drastically with the fiber length, following the power law. The power law of elastic modulus G′ vs the correlation length ξ obtained from this simulation has an exponent of −1.71, which is close to the exponent of −1.5 for a single-domain network of agar gels. On the other hand, the experimental results from multidomain networks give rise to a power law index of −0.49. The difference between −1.5 and −0.49 can be attributed to the multidomain structure, which weakens the structure of the overall system and therefore suppresses the increase in G′. In addition, when the aspect ratio of the fiber is smaller than 20, the radius of the fiber cross-section has a great impact on the network elasticity, while, when the aspect ratio is larger than 20, it has almost no effect on the elastic property of the network. The stress distribution in the network is uniform due to the symmetrical network structure. This study provides a general understanding of the correlation between microscopic structure and the macroscopic properties of soft functional materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CrN films on a bipolar plate in polymer electrolyte membrane fuel cells have several advantages owing to their excellent corrosion resistance and mechanical properties. Three CrN samples deposited at various radio frequency (RF) powers by RF magnetron sputtering were evaluated under potentiodynamic, potentiostatic and electrochemical impedance spectroscopy conditions. The electrochemical impedance spectroscopy data were monitored for 168 h in a corrosive environment at 70 °C to determine the coating performance at +600 mVSCE under simulated cathodic conditions in a polymer electrolyte membrane fuel cell. The electrochemical behavior of the coatings increased with decreasing RF power. CrN films on the AISI 316 stainless steel substrate showed high protective efficiency and charge transfer resistance, i.e. increasing corrosion resistance with decreasing RF power. X-ray diffraction confirmed the formation of a CrN(200) preferred orientation at low RF power.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a biological fibrous structure, silkworm cocoon provides multiple protective functionalities to safeguard the silk moth pupa’s metabolic activity. The mechanism of this protection could be adopted in clothing manufacture to provide more comfortable apparel. In this study, the thermal insulation properties of both domestic Bombyx mori (B. mori) and wild Antheraea pernyi (A. pernyi) cocoons were investigated under both warm and cold environmental conditions. Computational fluid dynamics models have been developed to simulate the heat transfer process through both types of cocoon wall structures. The simulation results show that the wild A. pernyi cocoon reduces the intensity of convection and heat flux between the environment and the cocoon interior and has higher wind resistance than its domestic counterpart. Compared with A. pernyi cocoon, the B. mori cocoon facilitates easy air transfer and decreases the temperature lag when the surrounding conditions are changed. The new knowledge has significant implications for developing biomimetic thermal functional materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.