1 resultado para volume-time curve
em Dalarna University College Electronic Archive
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (51)
- Brock University, Canada (4)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (14)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (29)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (17)
- Indian Institute of Science - Bangalore - Índia (37)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Publishing Network for Geoscientific & Environmental Data (433)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (34)
- Queensland University of Technology - ePrints Archive (85)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (86)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (6)
- Université de Montréal (1)
- Université de Montréal, Canada (7)
- University of Connecticut - USA (1)
- University of Michigan (10)
- University of Queensland eSpace - Australia (13)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
A massive amount has been written about forecasting but few articles are written about the development of time series models of call volumes for emergency services. In this study, we use different techniques for forecasting and make the comparison of the techniques for the call volume of the emergency service Rescue 1122 Lahore, Pakistan. For the purpose of this study data is taken from emergency calls of Rescue 1122 from 1st January 2008 to 31 December 2009 and 731 observations are used. Our goal is to develop a simple model that could be used for forecasting the daily call volume. Two different approaches are used for forecasting the daily call volume Box and Jenkins (ARIMA) methodology and Smoothing methodology. We generate the models for forecasting of call volume and present a comparison of the two different techniques.