6 resultados para visitor information, network services, data collecting, data analysis, statistics, locating
em Dalarna University College Electronic Archive
Resumo:
This paper investigates what factors affect the destination choice for Jordanian to 8 countries (Oman, Saudi Arabia, Syria, Tunisia, Yemen, Egypt, Lebanon and Bahrain) using panel data analysis. Number of outbound tourists is represented as dependent variable, which is regressed over five explanatory variables using fixed effect model. The finding of this paper is that tourists from Jordan have weak demand for outbound tourism; Jordanian decision of traveling abroad is determined by the cost of traveling to different places and choosing the cheapest alternative.
Resumo:
Market research is often conducted through conventional methods such as surveys, focus groups and interviews. But the drawbacks of these methods are that they can be costly and timeconsuming. This study develops a new method, based on a combination of standard techniques like sentiment analysis and normalisation, to conduct market research in a manner that is free and quick. The method can be used in many application-areas, but this study focuses mainly on the veganism market to identify vegan food preferences in the form of a profile. Several food words are identified, along with their distribution between positive and negative sentiments in the profile. Surprisingly, non-vegan foods such as cheese, cake, milk, pizza and chicken dominate the profile, indicating that there is a significant market for vegan-suitable alternatives for such foods. Meanwhile, vegan-suitable foods such as coconut, potato, blueberries, kale and tofu also make strong appearances in the profile. Validation is performed by using the method on Volkswagen vehicle data to identify positive and negative sentiment across five car models. Some results were found to be consistent with sales figures and expert reviews, while others were inconsistent. The reliability of the method is therefore questionable, so the results should be used with caution.
Resumo:
The advancement of GPS technology has made it possible to use GPS devices as orientation and navigation tools, but also as tools to track spatiotemporal information. GPS tracking data can be broadly applied in location-based services, such as spatial distribution of the economy, transportation routing and planning, traffic management and environmental control. Therefore, knowledge of how to process the data from a standard GPS device is crucial for further use. Previous studies have considered various issues of the data processing at the time. This paper, however, aims to outline a general procedure for processing GPS tracking data. The procedure is illustrated step-by-step by the processing of real-world GPS data of car movements in Borlänge in the centre of Sweden.
Resumo:
The Twitter System is the biggest social network in the world, and everyday millions of tweets are posted and talked about, expressing various views and opinions. A large variety of research activities have been conducted to study how the opinions can be clustered and analyzed, so that some tendencies can be uncovered. Due to the inherent weaknesses of the tweets - very short texts and very informal styles of writing - it is rather hard to make an investigation of tweet data analysis giving results with good performance and accuracy. In this paper, we intend to attack the problem from another aspect - using a two-layer structure to analyze the twitter data: LDA with topic map modelling. The experimental results demonstrate that this approach shows a progress in twitter data analysis. However, more experiments with this method are expected in order to ensure that the accurate analytic results can be maintained.
Resumo:
Recommendation systems aim to help users make decisions more efficiently. The most widely used method in recommendation systems is collaborative filtering, of which, a critical step is to analyze a user's preferences and make recommendations of products or services based on similarity analysis with other users' ratings. However, collaborative filtering is less usable for recommendation facing the "cold start" problem, i.e. few comments being given to products or services. To tackle this problem, we propose an improved method that combines collaborative filtering and data classification. We use hotel recommendation data to test the proposed method. The accuracy of the recommendation is determined by the rankings. Evaluations regarding the accuracies of Top-3 and Top-10 recommendation lists using the 10-fold cross-validation method and ROC curves are conducted. The results show that the Top-3 hotel recommendation list proposed by the combined method has the superiority of the recommendation performance than the Top-10 list under the cold start condition in most of the times.
Resumo:
The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle activated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Doppler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of the radar on the road. However, clear methodologies for in-field calibration have not been carefully established. The signs are often installed by subjective judgment which results in measurement errors. This paper develops a calibration method based on mining the data collected and matching individual vehicles travelling between two radars. The data was cleaned and prepared in two ways: cleaning and reconstructing. The results showed that the proposed correction factor derived from the cleaned data corresponded well with the experimental factor done on site. In addition, this proposed factor showed superior performance to the one derived from the reconstructed data.