9 resultados para variance component

em Dalarna University College Electronic Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision.  Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes.  The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to develop a flexible model for analysis of quantitative trait loci (QTL) in outbred line crosses, which includes both additive and dominance effects. Our flexible intercross analysis (FIA) model accounts for QTL that are not fixed within founder lines and is based on the variance component framework. Genome scans with FIA are performed using a score statistic, which does not require variance component estimation. RESULTS: Simulations of a pedigree with 800 F2 individuals showed that the power of FIA including both additive and dominance effects was almost 50% for a QTL with equal allele frequencies in both lines with complete dominance and a moderate effect, whereas the power of a traditional regression model was equal to the chosen significance value of 5%. The power of FIA without dominance effects included in the model was close to those obtained for FIA with dominance for all simulated cases except for QTL with overdominant effects. A genome-wide linkage analysis of experimental data from an F2 intercross between Red Jungle Fowl and White Leghorn was performed with both additive and dominance effects included in FIA. The score values for chicken body weight at 200 days of age were similar to those obtained in FIA analysis without dominance. CONCLUSION: We have extended FIA to include QTL dominance effects. The power of FIA was superior, or similar, to standard regression methods for QTL effects with dominance. The difference in power for FIA with or without dominance is expected to be small as long as the QTL effects are not overdominant. We suggest that FIA with only additive effects should be the standard model to be used, especially since it is more computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson's disease (PD) is the second most common neurodegenerative disorder (after Alzheimer's disease) and directly affects upto 5 million people worldwide. The stages (Hoehn and Yaar) of disease has been predicted by many methods which will be helpful for the doctors to give the dosage according to it. So these methods were brought up based on the data set which includes about seventy patients at nine clinics in Sweden. The purpose of the work is to analyze unsupervised technique with supervised neural network techniques in order to make sure the collected data sets are reliable to make decisions. The data which is available was preprocessed before calculating the features of it. One of the complex and efficient feature called wavelets has been calculated to present the data set to the network. The dimension of the final feature set has been reduced using principle component analysis. For unsupervised learning k-means gives the closer result around 76% while comparing with supervised techniques. Back propagation and J4 has been used as supervised model to classify the stages of Parkinson's disease where back propagation gives the variance percentage of 76-82%. The results of both these models have been analyzed. This proves that the data which are collected are reliable to predict the disease stages in Parkinson's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An international standard, ISO/DP 9459-4 has been proposed to establish a uniform standard of quality for small, factory-made solar heating systerns. In this proposal, system components are tested separatelyand total system performance is calculated using system simulations based on component model parameter values validated using the results from the component tests. Another approach is to test the whole system in operation under representative conditions, where the results can be used as a measure of the general system performance. The advantage of system testing of this form is that it is not dependent on simulations and the possible inaccuracies of the models. Its disadvantage is that it is restricted to the boundary conditions for the test. Component testing and system simulation is flexible, but requires an accurate and reliable simulation model.The heat store is a key component conceming system performance. Thus, this work focuses on the storage system consisting store, electrical auxiliary heater, heat exchangers and tempering valve. Four different storage system configurations with a volume of 750 litre were tested in an indoor system test using a six -day test sequence. A store component test and system simulation was carried out on one of the four configurations, applying the proposed standard for stores, ISO/DP 9459-4A. Three newly developed test sequences for intemalload side heat exchangers, not in the proposed ISO standard, were also carried out. The MULTIPORT store model was used for this work. This paper discusses the results of the indoor system test, the store component test, the validation of the store model parameter values and the system simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic improvement in litter size in pigs has been substantial during the last 10-15 years. The number of teats on the sow must increase as well to meet the needs of the piglets, because each piglet needs access to its own teat. We applied a genetic heterogeneity model on teat numberin sows, and estimated medium-high heritability for teat number (0.5), but low heritability for residual variance (0.05), indicating that selection for reduced variance might have very limited effect. A numerically positive correlation (0.8) between additive genetic breeding values for mean and for variance was found, but because of the low heritability for residual variance, the variance will increase very slowly with the mean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may, however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the genetic variance heterogeneity.