2 resultados para triggering conditions

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate speed prediction is a crucial step in the development of a dynamic vehcile activated sign (VAS). A previous study showed that the optimal trigger speed of such signs will need to be pre-determined according to the nature of the site and to the traffic conditions. The objective of this paper is to find an accurate predictive model based on historical traffic speed data to derive the optimal trigger speed for such signs. Adaptive neuro fuzzy (ANFIS), classification and regression tree (CART) and random forest (RF) were developed to predict one step ahead speed during all times of the day. The developed models were evaluated and compared to the results obtained from artificial neural network (ANN), multiple linear regression (MLR) and naïve prediction using traffic speed data collected at four sites located in Sweden. The data were aggregated into two periods, a short term period (5-min) and a long term period (1-hour). The results of this study showed that using RF is a promising method for predicting mean speed in the two proposed periods.. It is concluded that in terms of performance and computational complexity, a simplistic input features to the predicitive model gave a marked increase in the response time of the model whilse still delivering a low prediction error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.